Math, asked by JoelCW8446, 2 months ago

Graphs of modulus function f(x) =|x-2|-2

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is .

\rm :\longmapsto\:f(x) =  |x - 2| - 2

\rm :\longmapsto\:Let \: y \:  =  \: f(x) =  |x - 2| - 2

☆ Let first define the function f(x).

We know,

☆ By definition of Modulus function,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x| = \begin{cases} &\sf{x \:  \: if \: x \geqslant 0} \\ &\sf{ - x \: \:  if \: x < 0} \end{cases}\end{gathered}\end{gathered}

Hence,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x - 2| = \begin{cases} &\sf{x - 2 \:  \: if \: x - 2 \geqslant 0} \\ &\sf{ - (x - 2) \: \:  if \: x  - 2< 0} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x - 2| = \begin{cases} &\sf{x - 2 \:  \: if \: x \geqslant 2} \\ &\sf{2 - x \: \:  if \: x  < 2} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x - 2|  - 2= \begin{cases} &\sf{x - 2 - 2 \:  \: if \: x \geqslant 2} \\ &\sf{2 - x - 2 \: \:  if \: x  < 2} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x - 2|  - 2= \begin{cases} &\sf{x - 4 \:  \: if \: x \geqslant 2} \\ &\sf{- x \: \:  if \: x  < 2} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\:\bf\implies \:y =  |x - 2|  - 2= \begin{cases} &\sf{x - 4 \:  \: if \: x \geqslant 2} \\ &\sf{- x \: \:  if \: x  < 2} \end{cases}\end{gathered}\end{gathered}

Case :- 1

\rm :\longmapsto\:When \: x \geqslant 2

\rm :\longmapsto\:y = x - 4

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 2 & \sf   - 2 \\ \\ \sf 3 & \sf  - 1 \\ \\ \sf 4 & \sf 0 \end{array}} \\ \end{gathered}

☆ Blue line represents y = x - 4

Case :- 2

\rm :\longmapsto\:When \: x \:  <  \: 2

\rm :\longmapsto\:y =  - \:  x

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf  - 1 \\ \\ \sf 0 & \sf 0 \\ \\ \sf  - 1 & \sf 1 \end{array}} \\ \end{gathered}

☆ Green line represents y = - x

➢ Now draw a graph using the points

➢ See the attachment graph.

Range

We know,

\rm :\longmapsto\: |x - 2| \geqslant 0

\rm :\longmapsto\: |x - 2|  - 2\geqslant 0 - 2

\rm :\longmapsto\: |x - 2|  - 2\geqslant  - 2

\bf\implies \:graph \: should \: lie \: above \: y \geqslant  - 2

Attachments:
Similar questions