guys fast do it
I will mark brinliest to 1$t answer
question 19
Answers
Solution:
(a+b)^3 +(b+c)^3 +(c+a)^3 - 3(a+b)(b+c)(c+a)
= a^3+b^3 + 3(a^2)b + 3a(b^2) + b^3 + c^3 + 3(b^2)c + 3b(c^2) + a^3 + c^3 + 3(a^2)c + 3a(c^2) - 3(b^2)c - 3b(c^2) - 3abc - 3a(c^2) - 3a(b^2) - 3abc - 3(a^2)b - 3(a^2)c
= 2a^3 + 2b^3 + 2c^3 + 6abc
=2(a^3 + b^3 + c^3 + 3abc)
Hope it Helped all...:-)
Answer:
Step-by-step explanation:
Answer:
Step-by-step explanation:
(a+b)³+(b+c)³+(c+a)³-3(a+b)(b+c)(c+a)=2(a³+b³+c³)-3abc
a³+b³+3ab(a+b)+b³+c³+3bc(b+c)+c³+a³+3ca(c+a)-3(a+b)(b+c)(c+a)=2(a³+b³+c³)-3abc
2a³+2b³+2c³+3ab(a+b)+3bc(b+c)+3ca(c+a)-3(a+b)(b+c)(c+a)=2(a³+b³+c³)-3abc
2a³+2b³+2c³+[3abc(a+b)(b+c)(c+a)-3(a+b)(b+c)(c+a)]=2(a³+b³+c³)-3abc
2a³+2b³+2c³+[3abc{3(a+b)(b+c)(c+a)}-{3(a+b)(b+c)(c+a)}]=2(a³+b³+c³)-3abc
2a³+2b³+2c³+3abc=2(a³+b³+c³)-3abc
2(a³+b³+c³)+3abc=2(a³+b³+c³)-3abc
PROVED