guys help me because its urgent
this is question of computer 6
Answers
Explanation:
दिया है :–
• एक प्रथम कोटि की अभिक्रिया का अर्द्धआयु काल 15 मिनट है ।
ज्ञात करना है :–
• अभिक्रिया के 90% अंश पूर्ण होने में लगने वाले समय = ?
हल :–
• हम जानते हैं कि प्रथम कोटि की अभिक्रिया का अर्द्धआयु काल –
\begin{gathered}\\ \implies \large{ \boxed{\bf t_{ \frac{1}{2}} = \dfrac{0.693}{k}}} \\\end{gathered}
⟹
t
2
1
=
k
0.693
• मान रखने पर –
\begin{gathered}\\ \implies\bf 15= \dfrac{0.693}{k} \\\end{gathered}
⟹15=
k
0.693
\begin{gathered}\\ \implies\bf k= \dfrac{0.693}{15} \: \: \: \: - - - eq.(1)\\\end{gathered}
⟹k=
15
0.693
−−−eq.(1)
• n% के लिए –
\begin{gathered}\\ \implies \large{ \boxed{\bf t_{n\%} = \dfrac{2.303}{k} log \bigg( \dfrac{a}{a - x} \bigg)}} \\\end{gathered}
⟹
t
n%
=
k
2.303
log(
a−x
a
)
• यहाँ x => a का 90 %
• अतः –
\begin{gathered}\\ \implies\bf t_{90\%} = \dfrac{2.303}{k} log \bigg( \dfrac{a}{a - a \times \frac{90}{100} } \bigg) \\\end{gathered}
⟹t
90%
=
k
2.303
log(
a−a×
100
90
a
)
\begin{gathered}\\ \implies\bf t_{90\%} = \dfrac{2.303}{k} log \bigg( \dfrac{a}{\frac{10a}{100} } \bigg) \\\end{gathered}
⟹t
90%
=
k
2.303
log(
100
10a
a
)
\begin{gathered}\\ \implies\bf t_{90\%} = \dfrac{2.303}{k} log \bigg( \dfrac{a}{\frac{a}{10} } \bigg) \\\end{gathered}
⟹t
90%
=
k
2.303
log(
10
a
a
)
\begin{gathered}\\ \implies\bf t_{90\%} = \dfrac{2.303}{k} log (10) \\\end{gathered}
⟹t
90%
=
k
2.303
log(10)
\begin{gathered}\\ \implies\bf t_{90\%} = \dfrac{2.303}{k}(1) \\\end{gathered}
⟹t
90%
=
k
2.303
(1)
\begin{gathered}\\ \implies\bf t_{90\%} = \dfrac{2.303}{k} \\\end{gathered}
⟹t
90%
=
k
2.303
• समीकरण (1) का प्रयोग करने पर –
\begin{gathered}\\ \implies\bf t_{90\%} = \dfrac{2.303}{ \bigg(\dfrac{0.693}{15} \bigg)} \\\end{gathered}
⟹t
90%
=
(
15
0.693
)
2.303
\begin{gathered}\\ \implies\bf t_{90\%} = \dfrac{2.303}{0.693} \times 15 \\\end{gathered}
⟹t
90%
=
0.693
2.303
×15
\begin{gathered}\\ \implies \large{ \boxed{\bf t_{90\%} =49.84}} \\\end{gathered}
⟹
t
90%
=49.84
▪︎ अतः अभिक्रिया के 90% अंश पूर्ण होने में लगने वाले समय 49.84 मिनट है।