Guys!!!!........ May I have yr attention please??
Answers
We know that the sum of 'n' terms of an A.P is given by :
Sn = n/2 × { 2a + (n - 1)d }
Let us consider Series in the Numerator :
5 + 9 + 13 + . . .to n terms
In Numerator series : 'a' = 5 and 'd' = 9 - 5 = 4
Sum of 'n' terms of Numerator series = n/2 × {(2 × 5) + (n - 1)4}
Sum of 'n' terms of Numerator series = n/2 × {4n + 6} = n(2n + 3)
= 2n² + 3n
Let us consider Series in the Denominator :
7 + 9 + 11 + . . .to (n + 1) terms
In Denominator series : 'a' = 7 and 'd' = 9 - 7 = 2
Sum of 'n + 1' terms of Denominator series = (n + 1)/2 × {(2 × 7) + 2n}
⇒ Sum of 'n + 1' terms of Denominator series = (n + 1)/2 × {14 + 2n}
⇒ Sum of 'n + 1' terms of Denominator series = (n + 1)(n + 7)
= n² + 8n + 7
The Question reduces to :
⇒ 16(2n² + 3n) = 17(n² + 8n + 7)
⇒ 32n² + 48n = 17n² + 136n + 119
⇒ 15n² - 88n - 119 = 0
⇒ 15n² - 105n + 17n - 119 = 0
⇒ 15n(n - 7) + 17(n - 7) = 0
⇒ (n - 7)(15n + 17) = 0
⇒ n = 7 or n = -17/15
n cannot be -17/15, because n is positive number.
⇒ n = 7