Math, asked by helpinghand800, 7 months ago

Guys please answer it if you can.​

Attachments:

Answers

Answered by ABKRiqab
0

Answer:

which class are you study?

Answered by Bidikha
4

Given -

\alpha \: and \: \beta \: are \: the \: roots \: of \: the \: equations \: a {x}^{2}  - bx + c = 0

To prove -

 \sqrt{ \frac{\alpha}{\beta} }  +  \sqrt{ \frac{\beta}{\alpha} }  -  \sqrt{ \frac{b}{a} }  = 0

Proof-

a {x}^{2}  - bx + c = 0

 \alpha  \:  \:  \: and \:  \beta are \: the \: roots

\therefore \:  \alpha  +  \beta  =  -  \frac{ - b}{a}

 \alpha  +  \beta  =  \frac{b}{a} .....1)

And,

 \alpha  \times  \beta  =  \frac{b}{a} .....2)

Now,

L. H. S

 =  \sqrt{ \frac{ \alpha }{ \beta } }  +  \sqrt{ \frac{ \beta }{ \alpha } }  -   \sqrt{ \frac{b}{a} }

 =  \frac{ \sqrt{ \alpha } }{ \sqrt{ \beta } }  +  \frac{ \sqrt{ \beta } }{ \sqrt{ \alpha } }  -  \sqrt{ \frac{b}{a} }

Now taking L. C. M

 =   \frac{ \alpha  +  \beta }{ \sqrt{ \alpha }  \sqrt{ \beta } }   -  \sqrt{ \frac{b}{a} }

 =  \frac{ \alpha  +  \beta }{ \sqrt{ \alpha  \beta } }  -  \sqrt{ \frac{b}{a} }

 =  \frac{ \frac{b}{a} }{ \sqrt{ \frac{b}{a} } }  -  \sqrt{ \frac{b}{a} } (by \: 1 \: and \: 2)

 =   \frac{ \sqrt{ \frac{b}{a}   } \sqrt{ \frac{b}{a} }  }{ \sqrt{ \frac{b}{a} } }  -  \sqrt{ \frac{b}{a} }

 =  \sqrt{ \frac{b}{a} }  -  \sqrt{ \frac{b}{a} }

 = 0

R. H. S

Hence Proved

Similar questions