Guys PLEASE answer this question quickly.I will mark the best answer as brainliest.
Answers
Question:-If sinx+siny=m,and cosx+cosy=n,, then prove that,sin(x+y)=2mn/(m^2+n^2)
Solution:-
Sinx+Siny=m
Sin^2x+Sin^2y+2SinxSiny=m^2......i)
cosx+cosy=n
cos^2x+cos^2y+2cosxcosu=n^2......ii)
multiplying both equation we get
(Sinx+Siny)(cosx+cosy)=mn
Sinxcosx+Sinxcosy+Sinycosx+Sinycosy=mn
2(Sinxcosx+Sinxcosy+Sinycosx+Sinycosy)=2mn.iii)
adding equation first and second and dividing the sum equation III) ,we get
(m^2+n^2)/2mn=(sin^2x+Sin^2y+2Sinxcosx+cos^2x+cos^2y+cos^2y+2cosxcosy)/2(sinxcosx+sinxcosy+sinycosx+sinycosy)
=>(1+1+2sinxcosx+2cosxcosy)/2(sinxcosx+sinxcosy+sinycosx+sinycosy)
=>(sinxcosx+cosxcosy)/{sinx(cosx+cosy)+Siny(cosx+cosy)
=>sinx(cosx+cosy)/(sinx+siny)(cosx+cosy)
=>1/(sinxcosy+cosysinx)
2mn/(m^2+n^2)=sinxcosy+cosxsiny
=sin(x+y)=RHS
{hope it helps}