guys please help me
please resolve into factor this polynomial
a^6b^6 + b^6c^6 + c^6a^6
Answers
Answered by
2
a^6b^6 + b^6c^6 + c^6a^6
→ (ab)^6 + (bc)^6 + (ac)^6
→ {(ab)³}² + {(bc)³}² + {(ac)³}²
★(x+y+z)² = x²+y²+z²+2(xy+yz+xz)
x²+y²+z² = (x+y+z)² – 2(xy+yz+xz)
→ {(ab)³}² + {(bc)³}² + {(ac)³}²
→ {(ab)³+(bc)³+(ac)³}² – 2{(ab)³(bc)³ + (bc)³(ac)³ + (ab)³(ac)³}
→ {(ab)³+(bc)³+(ac)³}² – 2{(ab²c)³ + (abc²)³ + (a²bc)³}
→ {(ab)³+(bc)³+(ac)³}² – 2{a³b^6c³ + a³b³c^6 + a^6b³c³}
→ {(ab)³+(bc)³+(ac)³}² – 2a³b^6c³ + 2a³b³c^6 + 2a^6b³c³
Hope it helps...
→ (ab)^6 + (bc)^6 + (ac)^6
→ {(ab)³}² + {(bc)³}² + {(ac)³}²
★(x+y+z)² = x²+y²+z²+2(xy+yz+xz)
x²+y²+z² = (x+y+z)² – 2(xy+yz+xz)
→ {(ab)³}² + {(bc)³}² + {(ac)³}²
→ {(ab)³+(bc)³+(ac)³}² – 2{(ab)³(bc)³ + (bc)³(ac)³ + (ab)³(ac)³}
→ {(ab)³+(bc)³+(ac)³}² – 2{(ab²c)³ + (abc²)³ + (a²bc)³}
→ {(ab)³+(bc)³+(ac)³}² – 2{a³b^6c³ + a³b³c^6 + a^6b³c³}
→ {(ab)³+(bc)³+(ac)³}² – 2a³b^6c³ + 2a³b³c^6 + 2a^6b³c³
Hope it helps...
Mayankjain121:
thank you for your answer. but i didnt wanted to solve it. but wanted that polynomials in factors .if you can do it pleasebsend the answer . I will post this question again
Similar questions