Math, asked by ShraddhaRajput, 1 year ago

guys,,, please solve this question....

Attachments:

ShraddhaRajput: bye

Answers

Answered by VemugantiRahul
1
\mathfrak{\huge{\green{\underline{\red{Hola\: !}}}}}

\mathbb{\underline{\blue{SOLUTION:}}}

taking theta as x

\mathcal{\underline{\purple{L.H.S = }}}

\frac{sin x - cos x + 1}{sin x + cos x - 1}

Divide Numerator and Denominator by cos x

=> \frac{\frac{sin x}{cos x} - \frac{cos x}{cos x} + \frac{1}{cos x}}{\frac{sin x}{cos x} - \frac{cos x}{cos x} - \frac{1}{cos x}}

=> \frac{tan x - 1 + sec x}{tan x + 1 - sec x}

=> \frac{tan x +sec x - 1}{tan x - sec x + 1}

=> \frac{tanx + sec x - (sec^{2} x - tan^{2} x)}{tan x - sec x + 1)}

=> \frac{tan x + sec x - (sec^{2} x - tan^{2} x)}{tan x - sec x + 1}

=> \frac{tan x + sec x - ((sec x + tan x)(sec x - tan x))}{tan x - sec x + 1}

=> \frac{tan x + sec x - (tan x + sec x)(sec x - tan x)}{tan x - sec x + 1}

=> \frac{(tan x + sec x)[1 -(sec x - tan x)]}{1 - sec x + tan x}

=>  \frac{(tan x + sec x)[1 - sec x + tan x)]}{1 - sec x + tan x }

=> sec x + tan x

Rationalise

=> \frac{(sec x + tan x)(sec x - tan x)}{sec x - tan x}

=> \frac{sec^{2} x - tan^{2}x}{sec x - tan x}

=> \frac{1}{sec x - tan x}

\mathcal{\underline{\purple{= R.H.S}}}

\underline{\underline{Hence\: Proved}}

\mathbb{\underline{\purple{Identities\: Used : }}}

(a - b)^{2} = (a+b)(a-b)
[polynomial Identity]

sec^{2} x - tan^{2} x = 1
[Trigonometric Identity]

\mathfrak{\huge{\pink{Cheers}}}

\mathcal{\huge{\orange{Hope\: it\: Helps}}}
Answered by Tamash
4
Hi friend hope this attachment will help you.....
Attachments:

ShraddhaRajput: hello
Similar questions