Math, asked by shreyarawoor14, 1 month ago

guys plz ans this
its ok if u ans any one​

Attachments:

Answers

Answered by rakeshkumar993153
0

1. x=40 degree

2.x=95 degree

Answered by ItzBrainlyLords
1

Solution :

  • in fig. (i)

☞︎︎︎ Finding angle a :

  • here

 \\  \large \sf \mapsto \: 105\degree +  \angle \: a = 180 \degree \\  \:  \:  \:  \: ( \: linear \:  \: pair \: ) \\  \\

Angles along a straight line = 180°

 \\  \large \tt \implies \angle \: a = 180 \degree - 105 \degree \\  \\  \large \sf \therefore \: \underline{ \underline{  \angle \: a = 75 \degree}} \\

☞︎︎︎ Finding angle b :

 \\  \large \sf \mapsto \: 45\degree +  \angle \: b = 180 \degree \\  \:  \:  \:  \: ( \: linear \:  \: pair \: ) \\  \\

\large \tt \implies \angle \: b= 180 \degree - 45 \degree \\  \\  \large \sf \therefore \: \underline{ \underline{  \angle \: b= 135 \degree}} \\

☞︎︎︎ Finding angle x :

  • let angle with x be = y

here,

 \\  \large \sf \mapsto \: \angle \: x +  \angle \: y = 180 \degree \\  \:  \:  \:  \: ( \: linear \:  \: pair \: ) \\

 \large \leadsto \rm \angle \: y =  \angle \: a \:  \\ (alternate \:  \: interior \:  \: angles \: ) \\  \\  \large \sf \therefore \angle \: y = 75 \degree \\

 \large \implies \sf \angle \: x + 75 \degree = 180 \degree \\  \\ \large \sf \implies \angle \: x = 180 \degree - 75 \degree \\  \\  \large \sf \therefore \:  \underline{ \underline{ \angle \: x = 105 \degree}} \\

_________________________________________

  • in fig. (ii)

☞︎︎︎ let non given angle be = y

 \\  \large \sf \mapsto \: \angle \: y + 55 \degree + 60 \degree = 180 \degree \\  \:  \:  \: linear \:  \: pair \\  \\  \large \sf \implies \angle \: y + 105 \degree = 180 \degree \\  \\  \large \sf \implies \angle \: y = 180 \degree - 105 \degree \\  \\   \large \sf \therefore \: \underline{ \underline{  \angle \: y= 75 \degree}} \\

Construction :

Draw a straight line joining x with x

  • Take angels of lower triangle :

(with angle y ) = x¹ and x²

  • Angels of upper triangle= x³ and x⁴

here,

 \\  \large \sf \: joining :  \:  {x}^{1}  +  {x}^{2}  +  {x}^{3}  +  {x}^{4}  \\

  • gives the value of 2x = ( x + x )

☞︎︎︎ Finding x¹ and x² :

  \\ \large \rm \underline{ \star \: angle \:  \: sum \:  \: property} \\

 \large \tt \implies \:  {x}^{}  +  {x}^{}  + 75 \degree = 180 \degree \\  \\ \large \tt \implies \: 2x = 180 \degree - 75 \degree \\  \\  \large \tt \implies \:  x =  \frac{105}{2}  \\  \\  \large \tt \star  \: \: x = 52.5 \degree \\

Angle Sum Property for upper triangle:

 \\  \large \tt \implies \: x + x + 105 \degree = 180 \degree \\  \\  \large \tt \implies \: 2x = 180 \degree - 105 \degree \\  \\  \large \tt \implies \: x =  \frac{75}{2}  \\  \\  \large \sf \: \star \:  \: x = 32.5 \\

True Value of x :

 \\  \large \sf \:  \leadsto \:  {x}^{1}  +  {x}^{2}  \\

  • x¹ = 52.5

  • x² = 32.5

 \\  \large \sf \:  \implies \: 52.5 + 32.5 = x \\  \\  \large \star \:  \underline{ \underline{ \sf \: x = 85 \degree}} \\

Similar questions