Math, asked by adeeladilu2, 9 months ago

guys solve this sum ​

Attachments:

Answers

Answered by wwwuamuam
201

 \huge \bold{\underline \pink{Question  \: : \: }}

Find the 11th term of the arithmetic progression .

 \huge \bold{\underline \red{Answer  \: : \: }}

 \bold \green{ \star{ \: Solution :}}

 \bold{let} \:  \: t_{1} \:  ,  \: t_{2} \:  , \:  t_{3} \:  ,  \: t_{4} \: . \: . \:  \: . \bold{be \: the} \\  \bold{arithmetic \: progression} \: .

 \\ \bold \blue{ \star{ \: Formula :}}

 \bold{ t_{n} = a + (n - 1)d}

\bold \orange{ \star{ \:Given  :}}

 \bold{ t_{1}  = a =  - 5}

 \bold{d} =  t_{3}  -  t_{2}

 \:  \:  \:  = 0 - ( -  \frac{5}{2})

 \:  \:  \:  =  \frac{5}{2}

  \bold{{\implies} \orange{d =  \frac{5}{2} }}

 \bold{ t_{11}} =  - 5 + (11 - 1) \times  \frac{5}{2}

 \:  \:  \:  \:  \:  \:  \:  =  - 5 + 10 \times  (\frac{5}{2} )

 \:  \:  \:  \:  \:  \:  \:  =  - 5 + (5 \times 5)

 \:  \:  \:  \:  \:  \:  \:  =  - 5  +  25

 \:  \:  \:  \:  \:  \:  \:  = 20

 \bold{{ \implies} \purple{ t_{11} = 20}}

therefore,

option (B) 20 is the answer

Attachments:
Answered by sujeetkumarkumar1
2

Answer:

I love you ❣️❣️

Similar questions