Math, asked by VishalGupta11, 1 year ago

H.C.F of 126 and 35 is H. if H expressed as.H=126×A+35×B than prove that A×B\H =_2

Answers

Answered by Robin0071
34
your answer is here ☺☺☺

Attachments:
Answered by deepanshusharma20
0

Answer:

Step-by-step explanation:

Proved that .

To prove :  

Given :

         HCF of 126 and 35 is H.

Where, "H" is the common factor of 126 and 35.

To find H :

               126 = 2 × 3 × 3 × 7

                 35 = 5 × 7

Hence, the common factor "H" is  "7".

           126 A + 35 B = 7  -----> eqn (1)

Take common values from "126 A + 35 B = 7"

It gives,         7 (18A + 5B) = 7

LHS = 7 and RHS =7 get cancel each other, which gives

                          18A + 5B = 1  -----> eqn (2)

Compare the equation (1) and (2),

                             126 A + 35 B = 7                                            

                                 18A + 5B    = 1

We get, A = 2 and B = -7

Substitute, the value of A and B in

             

                 

                 

                 

                LHS = RHS

Similar questions