Physics, asked by sumashani198, 1 month ago

hakyatwuvhagafahajwuwtt A and B are moving with same constant ( cars) speed 2 m/s in opposite direction. The relative velocityof car A w. r. t car B will be ?​

Answers

Answered by Anonymous
108

Given :-

  • The magnitude of the velocities of A and B
  •  \sf |\overrightarrow{A} |   =A = 2m {s}^{ - 1}
  •  \sf |\overrightarrow{B} |   =B = 2m {s}^{ - 1}

To Find :-

  • The relative velocity between the cars A and B.

Solution :-

  • We are given, the cars A and B are in opposite directions. That means the angle between them is θ = 180°.To find relative velocity between A and B, formula is given by :-

\sf\red{:\implies R = \sqrt{A^{2} + B^{2} + 2AB\cos\theta}}

\small\underline{\pmb{\sf Substituting \: given \: values   :-}}

\sf\:  \:  \:  \:  \:  \: \: :\implies R = \sqrt{A^{2} + B^{2} + 2AB\cos\theta}  \\

\sf\:  \:  \:  \:  \:  \: \: :\implies R = \sqrt{ 2^{2} + 2^{2} - 2\times 2 \times 2 (\cos180\degree)}\\

\sf\:  \:  \:  \:  \:  \: \: :\implies R = \sqrt{4+ 4 - 2 \times 4 (-1) }\\

 \sf\:  \:  \:  \:  \:  \: \: :\implies R = \sqrt{4(1+1+2)} \\

 \sf\:  \:  \:  \:  \:  \: \: :\implies R = \sqrt{2^{2} \times 2^{2}} \\

\sf\:  \:  \:  \:  \:  \: \: :\implies R = 2\times 2\\

\sf\: \red{ \:  \:  \:  \:  \: \: :\implies R = 4}\\

\therefore\:\underline{\textsf{The relative velocity between the cars A and B is  \textbf{4m/s.}}}.\\\\

Similar questions