Math, asked by kankubadai1819, 4 months ago

हल कीजिए sin2x - sin4x + sin6x = 0​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \sin(2x)  - \sin(4x)  +  \sin(6x)  = 0

 =  > 2 \cos(  \frac{2x + 4x}{2} ) \sin( \frac{2x - 4x}{2} )   + 2 \sin(3x)  \cos(3x)  = 0 \\

 =  > -  2 \cos(3x)  \sin(x)  + 2 \sin(3x)  \cos(3x)  = 0

 =  > 2 \cos(3x) ( \sin(3x)  -  \sin(x) ) = 0

 =  > 2 \cos(3x) (2 \cos( \frac{3x + x}{2} )  \sin( \frac{3x - x}{2} ) ) = 0 \\

 =  > 4 \cos(3x)  \cos(2x)  \sin(x) = 0

 \cos(3x)  = 0 \:  \: or \:  \:  \cos(2x)  = 0 \:  \: or \:  \:  \sin(x)  = 0

 =  > 3x = (2n + 1) \frac{\pi}{2}  \:  \: or \:  \: 2x = (2m + 1) \frac{\pi}{2}  \:  \: or \:  \: x = k\pi

 =  > x = (2n + 1) \frac{\pi}{6}  \:  \: or \:  \: x = (2m + 1) \frac{\pi}{4}  \:  \: or \:  \: x = k\pi

Similar questions