Physics, asked by arnomls4843, 1 year ago

Half mole of an ideal gas (γ = 5/3) is taken through the cycle abcda, as shown in the figure. Take R=253J K-1 mol-1. (a) Find the temperature of the gas in the states a, b, c and d. (b) Find the amount of heat supplied in the processes ab and bc. (c) Find the amount of heat liberated in the processes cd and da.
Figure

Answers

Answered by shilpa85475
1

Explanation:

Given:

Number of moles of the gas, n=0.5 \mathrm{mol}

R=\frac{25}{3} \frac{J}{m o l}-K

\gamma=\frac{5}{3}

(a) Temperature at a = Ta

\mathrm{P}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{nRT}_{\mathrm{a}}

T_{a}=\frac{P_{a} V_{a}}{n R}=\frac{100 \times 10^{3} \times 5000 \times 10^{-6}}{0.5 \times \frac{25}{3}}=120 K

Similarly, temperature at b,

T_{a}=\frac{P_{a} V_{a}}{n R}=\frac{100 \times 10^{3} \times 10000 \times 10^{-6}}{0.5 \times \frac{25}{3}}=240 \mathrm{K}

Similarly, temperature at c is 480 \mathrm{k} and at d  is 240 k

(b) For process ab,

\mathrm{d} Q=n c_{p} \mathrm{d} T

[Since ab is isobaric]

d Q=\frac{1}{2} \times \frac{R \gamma}{\gamma-1}\left(T_{b}-T_{a}\right)

d Q=\frac{1}{2} \times \frac{\frac{(25 \times 5)}{3 \times 3}}{\frac{5}{3}-1} \times(240-120)

d Q=\frac{1}{2} \times \frac{125}{9} \times \frac{3}{2} \times(120)

d Q=1250 \mathrm{J}

For line bc, volume is constant. So, it is an isochoric process.

d Q=d U+d W

[d W=0, isochoric process]

\mathrm{dQ}=\mathrm{dU}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}

\mathrm{dQ}=\mathrm{nC}_{\mathrm{v}}\left(T_{c}-T_{b}\right)

d Q=\frac{1}{2} \times \frac{\frac{25}{3}}{\left[\left(\frac{5}{3}\right)-1\right]} \times(240)

d Q=\frac{1}{2} \times \frac{25}{3} \times \frac{3}{2} \times(240)

=1500 \mathrm{J}

(c) Heat liberated in cd (isobaric process),

\mathrm{dQ}=-\mathrm{nC}_{\mathrm{p}} \mathrm{dT}

\mathrm{dQ}=-\frac{1}{2} \times \frac{R \gamma}{\gamma-1}\left(T_{d}-T_{c}\right)

d Q=-\frac{1}{2} \times \frac{125}{9} \times \frac{3}{2} \times(240-480)

d Q=-\frac{1}{2} \times \frac{125}{9} \times \frac{3}{2} \times(-240)

=2500 \mathrm{J}

Heat liberated in da (isochoric process),

d Q=d U

\mathrm{dQ}=-\mathrm{nC}_{\mathrm{v}} \mathrm{dT}

\mathrm{dQ}=-\frac{1}{2} \times \frac{R}{\gamma-1}\left(T_{a}-T_{d}\right)

d Q=-\frac{1}{2} \times \frac{25}{2} \times(120-240)

d Q=-\frac{1}{2} \times \frac{25}{2} \times(-120)

=750 J

Answered by bestwriters
0

(a) The temperature of the gas in the states a is 120 K

The temperature of the gas in the states b is 240 K

The temperature of the gas in the states c is 480 K

The temperature of the gas in the states d is 240 K

(b) The amount of heat supplied in the processes ab is 1250 J

The amount of heat supplied in the processes bc is 1500 J

(c) The amount of heat liberated in the processes cd is 2500 J

The amount of heat liberated in the processes da is 750 J

Given:

n = 1/2

γ = 5/3

R=253 J/K mol

Explanation:

(a)

The ideal gas is given by the formula:

PV = nRT

Where, P = Pressure; V = Volume; R = Gas constant; T = Temperature

The temperature of the gas in the states a:

T_a=\frac{P V}{n R}

On substituting the known values, we get,

T_a=\frac{5000 \times 10^{-6} \times 100 \times 10^{3}}{\frac{1}{2} \times \frac{25}{3}}

\therefore T_a=120 \ K

The temperature of the gas in the states b:

T_b=\frac{P V}{n R}

On substituting the known values, we get,

T_b=\frac{10000 \times 10^{-6} \times 100 \times 10^{3}}{\frac{1}{2} \times \frac{25}{3}}

\therefore T_b=240 \ K

The temperature of the gas in the states c:

T_c=\frac{P V}{n R}

On substituting the known values, we get,

T_c=\frac{1000 \times 10^{-6} \times 200 \times 10^{3}}{\frac{1}{2} \times \frac{25}{3}}

\therefore T_c=480 \ K

The temperature of the gas in the states d:

T_d=\frac{P V}{n R}

On substituting the known values, we get,

T_d=\frac{5000 \times 10^{-6} \times 200 \times 10^{3}}{\frac{1}{2} \times \frac{25}{3}}

\therefore T_d=240 \ K

(b)

When heat is transferred from a to b, it is an isobaric process.

The heat supplied is given by the formula:

d Q=n C p d T

dQ=\frac{1}{2} \frac{R \gamma}{\gamma-1}(T b-T a)

On substituting the values, we get,

dQ=\frac{1}{2} \frac{\left(\frac{25}{3} \times \frac{5}{3}\right)}{\frac{5}{3}-1}(240-120)

\therefore dQ=1250 \ \mathrm{J}

When heat is transferred from b to c, it is an isochoric process.

The heat supplied is given by the formula:

d Q=n C v d T

dQ=\frac{1}{2} \frac{R}{\gamma-1}(T c-T b)

On substituting the values, we get,

dQ=\frac{1}{2} \frac{\frac{25}{3}}{\frac{5}{3}-1} \times 240

\therefore dQ=1500 \ J

(c)

cd is an isobaric process.

The heat liberated is given by the formula:

d Q=-n C p d T

dQ=\frac{1}{2} \frac{R \gamma}{\gamma-1}(T d-T c)

On substituting the values, we get,

dQ=-\frac{1}{2} \frac{\left(\frac{25}{3} \times \frac{5}{3}\right)}{\frac{5}{3}-1}(-240)

\therefore dQ=2500 \ J

da is an isochoric process.

The heat liberated is given by the formula:

d Q=-n C v d T

dQ=\frac{1}{2} \frac{R}{\gamma-1}(T a-T d)

On substituting the values, we get,

dQ=-\frac{1}{2} \frac{\frac{25}{3}}{\frac{5}{3}-1}(120-240)

\therefore dQ=750 \ J

Similar questions