Math, asked by adityabaral431, 11 months ago

Half the perimeter of garden,whose length is 4 more than its width is 36m.Find the dimensions of garden.

Answers

Answered by simranrawal
2

Answer:

16 and 20

Step-by-step explanation:

Let b be x

L will be 4+x

Perimeter =2(l+b)

Half Keri.eter =l+b

36=x+x+4

32=2x

X=16

Width =16

Length =16+4

20

Area = l×b

16×20

=320

Attachments:
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
6

\huge\sf\pink{Answer}

☞ Length = 20 m

☞ Breadth = 16 m

\rule{110}1

\huge\sf\blue{Given}

✭ Half perimeter of garden is 36m

✭ Length is 4m more than breadth

\rule{110}1

\huge\sf\gray{To \:Find}

◈ Dimensions of the rectangle?

\rule{110}1

\huge\sf\purple{Steps}

\sf\star\: Diagram \: \star

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\linethickness{0.4mm}\put(7.7,3){\large\sf{A}}\put(7.5,2){\sf{\large{x m}}}\put(7.7,1){\large\sf{B}}\put(9.3,0.7){\sf{\large{(x+4) m}}}\put(11.1,1){\large\sf{C}}\put(11.1,3){\large\sf{D}}\put(8,1){\line(1,0){3}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\end{picture}

Here, Let's assume

◕ The breadth be x m

◕ Length be (x+4)m

Perimeter of a triangle is given by,

\underline{\boxed{\green{\sf{Perimeter_{rectangle}=2(l+b)}}}}

Substituting the given values,

\sf{ Perimeter =2(l+b)}

\sf{ Perimeter =2(x+x+4)}

\sf{ Perimeter =2(2x+4)}

 \sf{\dfrac{1}{2}( Perimeter) =\dfrac{1}{2}\times2(2x+4)}

\red{\sf{ \dfrac{1}{2}(Perimeter)=(2x+4)}}

\bullet \: \underline{\textsf{As Per the Question}}

its given 36m,So,

\sf{2x+4=36}

\sf{ 2x =(36-4)}

\sf{ 2x =32}

\sf{ x =\dfrac{32}{2}}

\orange{\sf{ x =16m}}

So,

≫ Length = (x+4) m = (16+4)m = 20m

≫ Breadth = x m = 16m

\rule{170}3

Similar questions