Happy New Year!
plz solve this question
Answers
Answer:
816√2
Step-by-step explanation:
Given Equation is x^(1/4) + x^(-1/4) = 2√2
Let x^(1/4) = a.
⇒ a + 1/a = 2√2
⇒ a² + 1 = 2√2a
⇒ a² - 2√2a + 1 = 0
Here, a = 1, b = -2√2, c = 1
∴ D = b² - 4ac
= (-2√2)² - 4(1)(1)
= 8 - 4
= 4.
The solutions are:
⇒ x = -b ± √D/2a
= -(-2√2) ± √4/2
= 2√2 ± 2/2
= 1 + √2, √2 - 1.
(i)
x^(1/4) = 1 + √2
Taking power 4 on both sides, we get
x = (1 + √2)⁴
x = 17 + 12√2
(ii)
x^(1/4) = √2 - 1
x = 17 - 12√2.
------------------------------------------------------------------------------------------------
Now,
⇒ x² = (17 + 12√2)²
= 577 + 408√2.
Then,
(1/x²) = 1/(577 + 408√2)
= 1/(577 + 408√2) * (577 - 408√2)/(577 - 408√2)
= (577 - 408√2)/(577)² - (408√2)²
= 577 - 408√2/(1)
= 577 - 408√2
Hence:
⇒ x² - 1/x²
⇒ (577 + 408√2) - (577 - 408√2)
⇒ 577 + 408√2 - 577 + 408√2
⇒ 816√2.
Note: You can consider x² as any value, the result will be the same.
---------------------------------- Happy New year -----------------------------