Math, asked by aniketambi40, 4 months ago

harmonic conjugate of u(x,y)= e^y cosx​

Answers

Answered by diyasharma4f
0

Answer:

For u(x,y)=e−ysinxu(x,y)=e−ysin⁡x, we have u,1(x,y)=∂u(x,y)∂x=e−ycosxu,1(x,y)=∂u(x,y)∂x=e−ycos⁡x and u,2(x,y)=∂u(x,y)∂y=−e−ysinxu,2(x,y)=∂u(x,y)∂y=−e−ysin⁡x. Hence taking the straight-line path γ:τ∈[0,1]↦(xτ,yτ)γ:τ∈[0,1]↦(xτ,yτ) joining (0,0)(0,0) to (x,y)(x,y), we have

∫(x

Step-by-step explanation:

l hope it will help you

Similar questions