Math, asked by devilken7260, 1 year ago

Hcf of hcf and lcm of two numbers are 9 and 360 respectively if one number is 45 find the other number

Answers

Answered by řåhûł
134

GIVEN:

HCF of two numbers = 9

LCM of those two numbers = 360

One of the numbers = 45

TO FIND:

Another number

SOLUTION:

Let the other number be x

We know that,

Product of two numbers = HCF × LCM

According to the problem,

==> 45 × x = 9 × 360

==> x = (9 × 360) / 45

==> x = 9 × 8

==> x = 72

Therefore, the other number is 72.

Verification:

Product of two numbers = HCF × LCM

==> 45 × 72 = 9 × 360

==> 3240 = 3240

LHS = RHS

Hence, Verified!

Answered by Anonymous
43

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

  • The other required number = 72

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

  • H.C.F and L.C.M of two numbers are 9 and 360 respectively.If ine number is 45.

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The other required number = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\red{\:\:\: Formula\:Used\: Here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: HCF \times LCM = a \times b} \\\\

\sf\underline{\green{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {12 \times 360 = 60 \times b} \\\\

\dashrightarrow \sf {\frac{12 \times 360}{60} = b} \\\\

\dashrightarrow \sf {\dfrac{12 \times \cancel{360}}{ \cancel{60}} = b} \\\\

\dashrightarrow \sf {b = 72} \\\\

\sf\underline{\red{\:\:\: ThereFore:-\:\:\:}}

  • The other required number is 72.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Some more Information:

H.C.F ➪ Highest Common Factor.

L.C.M ➪ Least Common Multiple.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions