Math, asked by singhonkar9012, 1 year ago

He ratio between the exterior angle and the interior angle of a regular polygon is 1 : 3. Then the number of sides of the polygon is:

Answers

Answered by RvChaudharY50
87

\Large\underline\mathfrak{Question}

The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 3. Then the number of sides of the polygon is ?

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  \green{\sf \: interior \: angle \: of  \: regular\: polygon \: with \: sides \: n} \\  \\     \purple{\boxed{\bf\dfrac{(n - 2) \times 180}{n}}} \\  \\  \\  \sf \: exterior \: angle : -  \\  \\     \red{\boxed{\bf\dfrac{360}{n}}}

____________________________________

\underline {\underline{\LARGE{{\bf{\green{S}}}{\mathfrak{o}}{\mathfrak{\orange{l}}}{\mathfrak{\red{u}}}{\mathfrak{\pink{t}}}{\mathfrak{\purple{i}}}{\mathfrak{\blue{o}}}{\mathfrak{\red{n}}}}}} : \:

we have To Find value of n .

Given Ratio = Exterior : Interior = 1 : 3

or,

(Exterior/interior) = 1/3

Putting values now we get,,

\red{\boxed\implies} \:  \dfrac{ \frac{360}{ \cancel{n}} }{ \frac{(n - 2) \times 180}{\cancel{n}} }  =  \dfrac{1}{3}  \\  \\ \red{\boxed\implies} \:  \:  \dfrac{ \cancel{360}}{(n - 2) \times  \cancel{180}}  =  \dfrac{1}{3}  \\  \\ \red{\boxed\implies} \:  \:  \:  \frac{2}{n - 2}  =  \frac{1}{3}  \\  \\   \blue{\sf \: cross - multiply} \\  \\ \red{\boxed\implies} \:  \:  \: n - 2 = 6 \\  \\  \\ \pink{\large\boxed{\boxed{\bold{ \green{n}  \orange=  \red8}}}}

____________________________________

Hence, Number of Sides of Regular Polygon will be 8 ..

#BAL

#answerwithquality...

Answered by snakeeye86
0

Answer:

Question

The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 3. Then the number of

Similar questions