Math, asked by ONiharikaO, 1 year ago

heeeeeeyyyyyy ♥️♥️♥️


Prove that (sin alpha +cos alpha) (tan alpha+cot alpha) =sec alpha + cosec alpha​

Answers

Answered by shaun5
6

Step-by-step explanation:

let alpha =a

sin a + cos a(tan a + cot a)

sin a + cos a(sin a/cos a+cos a/ sin a)

sin a+ cos a(sin*a+cos*a/sinacosa)

(sina+cosa)(1/sinacosa)

sina +cosa/sinacosa

(sina/sinacosa)+(cosa/sinacosa)

w k t..1/cos=sec and 1/sin=cosec

1/cosa + 1/sin a

sec a + cosec a

as a = alpha

sec aplha + cosec alpha

hence proved

keep smiling

Answered by Anonymous
3

Step-by-step explanation:

L.H.S =

( \sin \alpha +  \cos\alpha )  ( \tan \alpha  +  \cot\alpha )  \\  \\  = ( \sin \alpha  +  \cos \alpha ) ( \frac{ \sin \alpha  }{ \cos \alpha  }  +  \frac{ \cos \alpha  }{ \sin \alpha  } ) \\  \\  =(  \sin \alpha  +  \cos \alpha ) \frac{( { \sin}^{2}  \alpha  +  { \cos }^{2}  \alpha) }{( \sin \alpha   \cos \alpha ) }  \\  \\  =  (\sin \alpha  +  \cos \alpha ) \times  \frac{1}{( \sin \alpha   \cos \alpha ) }  \\  \\  =  \frac{ \sin \alpha  }{ (\sin \alpha   \cos \alpha ) }  +  \frac{ \cos \alpha  }{ (\sin \alpha   \cos \alpha ) }  \\  \\  =  \frac{1}{ \cos \alpha  }  +  \frac{1}{ \sin \alpha  }  \\  \\  =  \sec \alpha   +  \csc \alpha

= R.H.S

°.° L.H.S = R.H.S

Hence, Proved

Similar questions