❤️Heeeyyy ❤️
Cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Answers
cos3A + cos5A + cos7A + cos15A = 4 cos4A cos5A cos6A
Step-by-step explanation:
L.H.S. = cos3A + cos5A + cos7A + cos15A
= (cos3A + cos7A) + (cos5A + cos15A)
= 2 cos{(3A + 7A)/2} cos{(3A - 7A)/2} + 2 cos{(5A + 15A)/2} cos{(5A - 15A)/2}
= 2 cos(10A/2) cos(- 4A/2) + 2 cos(20A/2) cos(- 10A/2)
= 2 cos5A cos2A + 2 cos10A cos5A
= 2 cos5A (cos2A + cos10A)
= 2 cos5A [2 cos{(2A + 10A)/2} cos{(2A - 10A)/2}]
= 2 cos5A * 2 cos(12A/2) cos(- 8A/2)
= 4 cos5A cos6A cos4A
= 4 cos4A cos5A cos6A = R.H.S.
Hence proved.
Rules:
• sinC + sinD = 2 sin{(C+D)/2} cos{(C - D)/2}
• sinC - sinD = 2 cos{(C + D)/2} sin{(C - D)/2}
• cosC + cosD = 2 cos{(C + D)/2} cos{(C - D)/2}
• cosC - cosD = 2 sin{(C + D)/2} sin{(D - C)/2}
• cos(- θ) = cosθ
Other trigonometric questions:
- Prove (b - a cosC) sinA = a cosA sinC. - https://brainly.in/question/13188154
- Find the value of (sec⁴θ - sec²θ). - https://brainly.in/question/13320789
The required prove is shown below:
Step-by-step explanation:
Consider the provided function.
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Use the trigonometry identity:
Consider the LHS
(∵cos(-θ)=cosθ)
(∵cos(-θ)=cosθ)
RHS=LHS
Hence proved.
#Learn More
Cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
https://brainly.in/question/4617018