Math, asked by educationmaster37, 10 months ago

hehehehe bhai tu hi krega thevirat ❤️✌️❤️✌️

Attachments:

Answers

Answered by AmulyaA08032005
11

Answer:

behenji hume bhi ye sums ate hai.

Attachments:
Answered by Anonymous
30

Given :

  • Sum of zeroes of the polynomial : - (k+3)x + (5k - 3) is equal to one fourth of product of the zeroes.

To Find :

  • The value of k.

Solution :

The given polynomial is :

  • - (k+3)x + (5k-3)

Compare the polynomial with the general form of quadratic polynomial, ax² + bx + c.

° We get

  • a = 1
  • b = -k-3
  • c = 5k-3

Sum of zeroes :

We know that the sum of zeroes is the ratio of x/x²

\sf{Sum\:of\:zeroes\:=\:\dfrac{-b}{a}}

\implies \sf{Sum\:of\:zeroes\:=\:\dfrac{-(-k-3)}{1}}

\implies \sf{Sum\:of\:zeroes\:=\:\dfrac{k+3}{1}}

\large{\boxed{\sf{\purple{Sum\:of\:zeroes\:=\:(k+3)}}}}

Product of zeroes :

We know that, the product of zeroes is the ratio of constant and x.

\sf{Product\:of\:zeroes\:=\:\dfrac{c}{a}}

\implies \sf{Product\:of\:zeroes\:=\:\dfrac{(5k-3)}{1}}

\large{\boxed{\sf{\red{Product\:of\:zeroes\:=\:5k-3}}}}

Now, further given, sum of the zeroes is equal to one fourth of the product of zeroes.

\sf{Sum\:of\:zeroes\:=\:\dfrac{1}{4}\:\times\:Product\:of\:zeroes}

\implies \sf{k+3=\dfrac{1}{4}\:\times\:(5k-3)}

\implies \sf{4(k+3)=5k-3}

\implies \sf{4k+12=5k-3}

\implies \sf{4k-5k=-3-12}

\implies \sf{-k=-15}

\implies \sf{k=15}

\large{\boxed{\sf{\red{Value\:of\:k\:=\:15}}}}

Similar questions