Math, asked by Suminder5539, 1 year ago

Height of circular cone is 3 times its diameter and volume is 216πcm×cm×cm. Find height of cone

Answers

Answered by shreya32457
8
______________________________

GIVEN :

DIMENSIONS OF A CONE ;

=> HEIGHT :

=> 3 * DIAMETER

______________________________

VOLUME :

=> 216 * π CM^3

______________________________

TO FIND :

=> THE HEIGHT OF THAT CONE ....

______________________________

FROM THE GIVEN INFO ,

=> WE SHOULD KNOW THE FORMULA OF VOLUME OF A CONE :

THAT'S :

=> 1 / 3 π R^2 H

______________________________

STEP 1 :

TO CONSIDER RADIUS , DIAMETER , HEIGHT

______________________________


CONSIDER ,

=> THE RADIUS AS X CM

______________________________

DIAMETER :

=> 2 * RADIUS

=> 2 * X

=> 2X CM

______________________________

HEIGHT :

=> 3 * DIAMETER

=> 3 * 2X

=> 6X CM

_____________________________

STEP 2 :

TO MAKING THE EQUATION BY PUTTING THESE VALUES

______________________________

NOW PUT THESE VALUES IN THE FORMULA :

=> 1 / 3 * π * X^2 * 6X

=> π * 2X * X^2

=> π * 2X^3 CM^3

_____________________________

BUT WE HAVE GIVEN THE VOLUME :

=> 216 * π CM^3

______________________________

STEP 3 :

TAKE THE VALUES AS EQUIVALENT

______________________________

=> 216 * π CM^3 = π * 2X^3 CM^3

=> 216 = 2X^3

=> 216 / 2 = X^3

=> 108 = X^3

=> X = 3√ 108

=> X = 4.76 CM

______________________________

RADIUS :

=> X CM

=> 4.76 CM

______________________________

STEP 4 :

WE HAVE GOT RADIUS ....

JUST FIND HEIGHT AS H = 6X

_____________________________

HEIGHT :

=> 6X CM

=> 6 * 4.76 CM

=> 28.56 CM

_____________________________

THANKS ....

______________________________









Answered by Avengers00
4
\underline{\underline{\huge{\textbf{Solution:}}}}

Given,
Height of the circular cone h = 3(Diameter of the base)
Volume v= 216\: cm^{3}

\underline{\large{\textsf{Step-1:}}}
Express the diameter of the base of the circular cone in terms of radius

Since,
Shape of base of circular cone is a Circle

We have,
\bigstar \mathbf{Diameter = 2 \times Radius}

So,
Height of Circular cone = 3(2×Radius of the base)

Height of Circular cone = 6(Radius of the base)

\underline{\large{\textsf{Step-2:}}}
Assume a variable for the Radius of base of cone

Let x\: cm be the radius of the base of circular cone

\underline{\large{\textsf{Step-3:}}}
Express the Height of circular cone in terms of radius of it's base.

Height of Circular cone h = 6x\: cm --(1)

\underline{\large{\textsf{Step-4:}}}
Find the volume of circular cone

We have,
\bigstar \mathbf{Volume\: of\: circular\: cone=\frac{1}{3}\, \pi r^{2} h}

By Substituting,

Volume of circular cone V = \frac{1}{3}\, \pi x^{2} (6x)

\implies V = \pi x^{2} (2x)

\implies V = 2 \pi x^{3}\: cm^{3}

\underline{\large{\textsf{Step-5:}}}
Equating Volume of the cone to 216\pi\: cm^{3} to find value of x
(As both volumes refers to the same cone)

\implies 2 \pi x^{3} = 216 \pi

\implies x^{3} = 108

\implies x = \sqrt[3]{108}

\implies x = 4.76

\therefore
Radius of base of circular cone = 4.76 cm

\underline{\large{\textsf{Step-6:}}}
Find the Height of circular cone

From (1)
Height of circular cone h= 6(4.76) = 28.56 cm

\therefore

\star \textsf{Height of the circular cone = \underline{\mathbf{28.56\: cm}}}
Similar questions