Hello all!
Could someone please provide a step by step explanation for this sum?
the answer is supposed to be 75°
Answers
Given :-
- ∠LCB=15°
- ABCD is a rhombus
- ACML is a square
- AC=BC
_________________________
To find :-
- ∠MBC
_________________________
Solution :-
⇒ AC=BC [given] ...(1.)
⇒ AC=CM [Side of square] ...(2.)
From equation (1) and (2),
⇒ BC=CM
Since BC=CM, ∆BCM will be an isosceles triangle.
⇒ ∠CMB = ∠CBM (Angle opposite to equal sides) ...(3.)
Now, we can see from the given figure that CL is the diagonal of square. Diagonal of square divide both angles equally.
i.e. ∠ACL=∠LCM ...(4.)
_________________________
Now we know that each angle of square is of 90°.
So,
⇒ ∠ACL+∠LCM=90°
⇒ ∠LCM+∠LCM=90° [from equation (4.)]
⇒ 2∠LCM=90°
⇒ ∠LCM=90°/2
⇒∠LCM=45°
Now it is given that ∠LCB=15° ...(5.)
⇒ ∠LCM=45°
⇒ ∠LCB+∠BCM=45°
⇒ 15°+∠BCM=45° [From equation (5.)]
⇒ ∠BCM=45°-15°
⇒ ∠BCM=30° ...(6.)
_________________________
Now applying angle sum property in ∆CBM
⇒ ∠MBC+∠CMB+∠BCM=180°
⇒ 30°+∠MBC+∠MBC=180° [From equation (3.) and (6.)]
⇒ 2∠MBC+30°=180°
⇒ 2∠MBC=180°-30°
⇒ 2∠MBC=150°
⇒ ∠MBC=150°/2
⇒ ∠MBC=75°
_________________________
In the square ALMC, ∠ACM=90°
Also, AC=BC (Given)
and BC=AB (Sides of Rhombus)
So, △ABC is an equilateral triangle
Now, ∠ACB=60°
So from figure , ∠MCB=90°−60°=30°
Now in triangle MBC, BC=CM, so ∠MBC=∠BMC=x(let)
Sum of all angle of a triangle =180°
∠MCB+∠MBC+∠BMC=180°
⇒30°+x+x=180°
⇒2x=180°−30°
⇒x=750°
- I Hope it's Helpful my Friend.