Math, asked by ghostrider52, 1 year ago

Hello any genius here to solve

Prove that
integration of 1/a² - x² = sin^(-1) (x/a) + C

Thank you! ​

Answers

Answered by shravya28
7

Answer:

heya mate

Step-by-step explanation:

here is your answer in attachment

please follow me

mark it as brainliest

Attachments:
Answered by ItSdHrUvSiNgH
14

Step-by-step explanation:

 \huge\blue{\underline{\underline{\bf Question:-}}}

prove \: that  =  >  \\  \\ \int  \frac{1}{ {a}^{2} -  {x}^{2}  }  =  { \sin}^{ - 1} ( \frac{x}{a} ) + c

\huge\blue{\underline{\underline{\bf Answer:-}}}

   \implies \int  \frac{1}{ {a}^{2}  -  {x}^{2} } \\  \\  let \:  \: x = a\sin( \theta) \\  \\   \frac{dx}{d \theta}  = a \cos( \theta)  \\  \\ dx = a \cos( \theta) \: d( \theta) \\  \\  \implies \int  \frac{1}{ {a}^{2}  -  {x}^{2} }   \\  \\  \implies \int  \frac{1}{ {a}^{2}  -  {a}^{2}   { \sin}^{2}( \theta) }  \times a\cos( \theta) \: d( \theta)  \\  \\  \implies  \int  \frac{ \cancel{a}\cos( \theta) \: d( \theta) }{ \cancel{a} \sqrt{1 -  { \sin}^{2}  ( \theta)} } \\  \\  \implies \int  \frac{ \cancel { \cos( \theta)}d( \theta)}{  \cancel{\cos( \theta)} } \\  \\  \implies \int d( \theta) \\  \\  \implies ( \theta) + c .....(1)\\  \\  x = a \sin( \theta) \\ ( \theta) =  { \sin}^{ - 1} ( \frac{x}{a} ) \\  \\  putting \:  \: value \:  \: of  \: \: ( \theta) \:  \: in \:  \: (1) \\  \\ \implies ( \theta) + c \\  \\  \huge \boxed{\leadsto ( { \sin}^{ - 1} ( \frac{x}{a} )  + c)}

Similar questions