Math, asked by ParvathyRamesh, 10 months ago

Hello! Can u answer this question??

Attachments:

Answers

Answered by kaushik05
26

 \boxed{ \huge \mathfrak{solution}}

To find :

The value :

 \star \:  \boxed{ \bold{ \frac{7}{ {cot}^{2} \phi }  -  \frac{7}{ {cos}^{2} \phi } }}

 \rightarrow \: 7( \frac{1}{ {cot}^{2} \phi }  -  \frac{1}{ {cos}^{2}  \phi} ) \\  \\  \rightarrow \: 7( \frac{1}{ \frac{ {cos}^{2}  \phi}{ {sin}^{2} \phi } }  -  \frac{1}{ {cos}^{2}  \phi} ) \\  \\  \rightarrow \: 7( \frac{ {sin}^{2}  \phi}{ {cos}^{2} \phi }  -  \frac{1}{ {cos}^{2}  \phi} ) \\  \\  \rightarrow \: 7( \frac{ {sin}^{2} \phi - 1 }{ {cos}^{2} \phi } ) \\  \\  \rightarrow \:   7 \cancel{( \frac{  -  {cos}^{2}  \phi }{ {cos}^{2}  \phi} )} \\  \\  \rightarrow \:  - 7

Option :

  \huge\boxed{ \red{D ) - 7</p><p>}}

Answered by anshi60
6

\huge{\pink{\underline{\black{\mathbb{Trigonometry}}}}}

 \frac{7}{ \cot {}^{2} (x) }  -  \frac{7}{ \cos {}^{2} (x) }

  = 7( \frac{ \sin {}^{2} x) }{ \cos {}^{2} (x) }  -  \frac{1}{ \cos {}^{2} (x) } )

 = 7 \frac{( \sin {}^{2} (x) - 1 )}{ \cos {}^{2} (x) }

we know that

sin² x+ cos²x = 1

then ,

 = 7 \frac{ \ (- cos {}^{2} (x)) }{ \cos {}^{2} (x) }

 =  - 7

Similar questions