CBSE BOARD X, asked by Anonymous, 1 year ago

Hello, can u plzz give my questions? ​

Attachments:

Answers

Answered by Rememberful
3

\textbf{Answer is in Attachment !}

Attachments:
Answered by SillySam
6

Given alpha and beta are the roots of equation, so x= alpha and x= beta.

x^2 -6x -2 = 0

 { \alpha }^{2}  - 6 \alpha  - 2 = 0

Taking -6 alpha on other side

so,

 { \alpha }^{2}  - 2 = 6 \alpha

-------(1)

x^2 -6x -2 =0

 { \beta }^{2}  - 6 \beta  - 2 = 0

 { \beta }^{2}  - 2 = 6 \beta

-------(2)

Now a10-2a8 /2a9

  \frac{\alpha 10 -  \beta 10 - 2( \alpha 8 -  \beta 8)}{2 \alpha 9 -  \beta 9}

 \frac{ \alpha 10 -  \beta 10 - 2 \alpha 8 + 2 \beta 8}{2 (\alpha 9 -  \beta 9)}

 \frac{ \alpha 10 - 2 \alpha 8 -  \beta 10 + 2 \beta 8}{2( \alpha 9 -  \beta 9)}

Taking alpha 8 and beta 8 common

 \frac{ \alpha {}^  8( \alpha {}^{2} - 2)   -   \beta  {}^{8}( { \beta }^{2} - 2)  }{2 \alpha  {}^{9}  -  \beta  {}^{9} }

  \frac{ { \alpha }^{8}6 \alpha  -  \beta  {}^{8} 6 \beta  }{2 (\alpha  {}^{9} -  \beta  {}^{9} ) }

 \frac{6( { \alpha }^{9} - { { \beta }^{9}) } }{2( { \alpha }^{9} -  { \beta }^{9}  )}

= 3

So, option C is the correct answer .

Similar questions