hello dear!!! plz... help me in this question
Answers
Answer:
In the attachment.. Hope it's helpful..
Answer:
Step-by-step explanation:
Given,
⇒ cosecθ - sinθ = l ...( )
⇒ secθ - cosθ = m ...( )
Multiply ( i ) and ( ii ),
= > ( cosecθ - sinθ )( secθ - cosθ ) = l m
Square on both sides,
= > sin^2 θ . cos^2 θ = l^2 m^2 ...( iii )
Now, square on both sides of ( i ),
= > ( cosecθ - sinθ )^2 = l^2
= > cosec^2 θ + sin^2 θ - 2cosecθsinθ = l^2
= > cosec^2 θ + sin^2 θ - 2( cosecθ x 1 / cosecθ ) = l^2
= > cosec^2 θ + sin^2 θ - 2 = l^2 ...( iv )
Square on both sides of ( ii ),
= > ( secθ - cosθ )^2 = m^2
= > sec^2 θ + cos^2 θ - 2secθcosθ = m^2
= > sec^2 θ + cos^2 θ - 2 ( secθ x 1 / secθ ) = m^2
= > sec^2 θ + cos^2 θ - 2 = m^2 ...( v )
Now, Adding ( iv ) and ( v ) with the addition of 3 to it, and multiply by ( iii ),
= > ( iii )[ iv + v + 3 ]
= > ( sin^2θ.cos^2θ )( cosec^2θ + sin^2θ - 2 + sec^2θ + cos^2θ - 2 + 3 ) = ( l^2 m^2 )( l^2 + m^2 + 3 )
= > ( sin^2θ.cos^2θ )( cosec^2θ + sec^2θ +sin^2θ + cos^2θ - 4 + 3 ) = l^2 m^2( l^2 + m^2 + 3 )
= > ( sin^2θ.cos^2θ )( cosec^2θ + sec^2θ + 1 - 4 + 3 ) = l^2m^2( l^2 + m^2 + 3 )
= > ( sin^2θ.cos^2θ )( cosec^2θ + sec^2θ ) = l^2m^2( l^2 + m^2 + 3 )
Hence, proved.