Math, asked by sree999, 1 year ago

Hello everybody ✌
Pls rationalize the above sum..

Attachments:

Answers

Answered by Anonymous
33
<b>Answer :

 =  >  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  +  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  =  >  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  +  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  =  >  \frac{ {(2 +  \sqrt{3} )}^{2} }{ {(2)}^{2}  -  {( \sqrt{3} )}^{2} }  +  \frac{ {(2 -  \sqrt{3} )}^{2} }{ {(2)}^{2} -  {( \sqrt{3}) }^{2}  }  \\  \\  =  >  \frac{ {(2)}^{2} +  {( \sqrt{3} )}^{2} + 2 \times 2 \times  \sqrt{3}   }{4 - 3}  +  \frac{ {(2)}^{2} +  {( \sqrt{3}) }^{2}  - 2 \times 2 \times  \sqrt{3}  }{4 - 3}  \\  \\  =  >  \frac{4 + 3 + 4 \sqrt{3} }{1}  +  \frac{4 + 3 - 4 \sqrt{3} }{1}  \\  \\  =  >  \frac{7 + 4 \sqrt{3} }{1}  +  \frac{7 - 4 \sqrt{3} }{1}  \\  \\  =  >  (7 + 4 \sqrt{3} ) + (7 - 4 \sqrt{3} ) \\  \\  =  > 7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}  \\  \\  =  > 7 + 7 \\  \\  =  > 14

\color{pink}\underline\textbf{Hence, 14 is your required answer. }

Tysm for the question!

sree999: thanks a lot sisy
Anonymous: No thx dearie, it's mah duty
sree999: ☺☺
Anonymous: :)
sree999: may God bless u! :)
Anonymous: Uh too my dear gurl ^_^
sree999: thanks...
Answered by BrainlyHulk
10
Here, I used a shortcut , when the denominators have same numbers with different signs you can do like this ( by cross multiply ).

》》 First attachment is the solution.

》》 Second attachment is the simplification and Identity used in the solution.

》》》 The other answer given by Beautiful5665 is of correct method without shortcuts.
Attachments:

BrainlyHulk: :-)
BrainlyHulk: Yeah ?
vvalor: hi
Anonymous: Urs is good too re
Anonymous: :+1:
BrainlyHulk: thanks
Anonymous: :)
BrainlyHulk: Thanks for marking my answer as Brainliest ♡
sree999: my pleasure!☺
Similar questions