HELLO FREIND
VIPUN HERE
⤵️HERE IS YOUR QUESTION ⤵️
⬆️12 points ⬆️
GIVE CORRECT ANSWER WITH CORRECT EXPLAINATION ..
Answers
\huge\rm\color{indigo}{Solution}Solution
\sf{\underline{Given} \:: \: {x}^{2} + \frac{1}{ {x}^{2} } = 27 }
Given
:x
2
+
x
2
1
=27
\sf{\underline{To \: find }\: : \: (i)x + \frac{1}{x} \: \: (ii)x - \frac{1}{x} }
Tofind
:(i)x+
x
1
(ii)x−
x
1
\sf {(x + \frac{1}{x} )}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } + 2(x+
x
1
)
2
=x
2
+
x
2
1
+2
\sf {(x + \frac{1}{x} )}^{2} = 27 + 2(x+
x
1
)
2
=27+2
\sf {(x + \frac{1}{x} )}^{2} = 29(x+
x
1
)
2
=29
\fbox{\sf x + \frac{1}{x} = \pm\sqrt{29} }
x+
x
1
=±
29
\sf {(x - \frac{1}{x}) }^{2} = {x}^{2} + \frac{1}{ {x}^{2} } - 2(x−
x
1
)
2
=x
2
+
x
2
1
−2
\sf {(x - \frac{1}{x}) }^{2} = 27 - 2(x−
x
1
)
2
=27−2
\sf {(x - \frac{1}{x}) }^{2} = 25(x−
x
1
)
2
=25
\sf x - \frac{1}{x} = \pm\sqrt{25}x−
x
1
=±
25
\fbox{\sf x - \frac{1}{x} = \pm5 }
x−
x
1
=±5