Math, asked by vipunsh, 1 year ago

HELLO FREIND

VIPUN HERE

⤵️HERE IS YOUR QUESTION ⤵️

if \:  {x}^{2}  +   \frac{1}{ {x}^{2} }  = 27. \: find \: the \: value \: of \: each \: of \: the \: following \:  \\ x +  \frac{1}{x}   \\ x -  \frac{1}{x}
⬆️12 points ⬆️

GIVE CORRECT ANSWER WITH CORRECT EXPLAINATION ..​

Answers

Answered by Anonymous
3

\huge\rm\color{indigo}{Solution}

 \sf{\underline{Given} \:: \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 27 }

 \sf{\underline{To \: find }\: :  \: (i)x +  \frac{1}{x} \:  \: (ii)x -  \frac{1}{x}   }

 \sf {(x +  \frac{1}{x} )}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} } + 2

 \sf {(x +  \frac{1}{x} )}^{2}  = 27   + 2

\sf {(x +  \frac{1}{x} )}^{2}  = 29

 \fbox{\sf x +  \frac{1}{x}   =   \pm\sqrt{29} }

 \sf {(x -  \frac{1}{x}) }^{2}  =  {x}^{2}   + \frac{1}{ {x}^{2} }  - 2

\sf {(x -  \frac{1}{x}) }^{2}  =  27  - 2

\sf {(x -  \frac{1}{x}) }^{2}  =  25

\sf x -  \frac{1}{x}   =   \pm\sqrt{25}

 \fbox{\sf x -  \frac{1}{x}   = \pm5 }


vipunsh: ok thanks
rajat5073: hi
rajat5073: comment there
rajat5073: please
Answered by yash197911
2

\huge\rm\color{indigo}{Solution}Solution

\sf{\underline{Given} \:: \: {x}^{2} + \frac{1}{ {x}^{2} } = 27 }

Given

:x

2

+

x

2

1

=27

\sf{\underline{To \: find }\: : \: (i)x + \frac{1}{x} \: \: (ii)x - \frac{1}{x} }

Tofind

:(i)x+

x

1

(ii)x−

x

1

\sf {(x + \frac{1}{x} )}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } + 2(x+

x

1

)

2

=x

2

+

x

2

1

+2

\sf {(x + \frac{1}{x} )}^{2} = 27 + 2(x+

x

1

)

2

=27+2

\sf {(x + \frac{1}{x} )}^{2} = 29(x+

x

1

)

2

=29

\fbox{\sf x + \frac{1}{x} = \pm\sqrt{29} }

x+

x

1

29

\sf {(x - \frac{1}{x}) }^{2} = {x}^{2} + \frac{1}{ {x}^{2} } - 2(x−

x

1

)

2

=x

2

+

x

2

1

−2

\sf {(x - \frac{1}{x}) }^{2} = 27 - 2(x−

x

1

)

2

=27−2

\sf {(x - \frac{1}{x}) }^{2} = 25(x−

x

1

)

2

=25

\sf x - \frac{1}{x} = \pm\sqrt{25}x−

x

1

25

\fbox{\sf x - \frac{1}{x} = \pm5 }

x−

x

1

=±5

Similar questions