Math, asked by Anonymous, 1 year ago

hello friends...

Answer this question...

Attachments:

Answers

Answered by abhi569
3


 \bold{AE = AD -------: \: ( 1 ) \: \: [ \: Given \: ] } \: \\ \bold{<br />BD = CE -------: \: ( 2 ) \: \: [ \: Given \: ] }




 \text{\underline{Subtract \: ( 2 ) \: from \: ( 1 ) , <br />}}


⏩ AE - BD = AD - CE


⏩ AE + CE = AD + BD


 \bold{ \Rightarrow AC = AB } \: \: \: \: \: \: \: \: \: \: \: \: \text{| \: \: \: from \: figure \: \: AE + CE = AC \: \: \: and \: \: \: AD + BD = AB } \\ \\\bold{ \Rightarrow AC = AB } \: \: \: \: \: \: - - - - - - - \: : ( \: 3\: )




From figure,

\bold{\angle A \: is \: common \: in \: both \: \triangle \: AEB \: and \: \triangle ADC}





So,

 \text{AD = AE \: \: \: \: \: \: \: \: \: \: \: \: \: | \: from \: ( \: i \: )} \\ \angle\text{A} = \angle\text{A \: \: \: \: \: \: \: \: \: \: \: \: \: | \: common} \\ \text{AC = AB \: \: \: \: \: \: \: \: \: \: \: \: \: | \: from \: ( \: 3\: )}


Hence,
 \bold{\triangle \: AEB \cong \triangle \: ADC} By SAS




 \boxed{ \bold{ \underline{Hence, proved. }}}
Attachments:
Answered by siddhartharao77
3

Given AE = AD and BD = CE.

(1)

AE + CE = AD + BD

AC = AB   ----- (i)


In ΔAEB & ΔADC

Given AE = AD

∠EAB = ∠DAC [common angle]

AC = AB(from(i))

Then, By SAS congruence, we get

ΔAEB ≅ ADC.



Hope it helps!


Attachments:
Similar questions