Math, asked by IITGENIUS1234, 1 year ago

♥ Hello Friends !!! ♥


Answer this question ⤵⤵


\textsf {If the ordered pair satisfying the equations}
\mathsf {a_1x + b_1y + c_1 = 0  \: and \:  a_2x + b_2y + c_2 = 0 \: has \: 1 \: as \: its \: }
\textsf {first coordinate, then which of the following is correct ?}

\mathsf  {a) \:  \: {\dfrac {a_1 + b_1}{a_2 + b_2} = {\dfrac {c_1}{c_2}}}}


\mathsf {b)  \:  \: {\dfrac{b_1 + c_1}{b_2 + c_2} = {\dfrac {a_1}{b_2}}}}


\mathsf {c)  \:  \: {\dfrac {c_1 + a_1}{c_2 + a_2} = {\dfrac {b_1}{b_2}}}}


\textsf {d) All the above}


❎ NO SPAM ANSWERS ❎


Best answer will be marked as BRAINLIEST!





Answers

Answered by Anonymous
6

\textsf{Given , the two equations are : }



\mathsf{a_1x+b_1y+c_1=0}


\mathsf{a_2x+b_2+c_2=0}



\underline{\underline{\huge\textsf{{{Cross Multiplication Method}}}}}


\textsf{By cross multiplication method , we know that :- }


\mathsf{\frac{x}{b_1c_2-b_2c_1}=\frac{y}{a_2c_1-a_1c_2}=\frac{1}{a_1b_2-a_2b_1}}


\implies \mathsf{\frac{x}{b_1c_2-b_2c_1}=\frac{1}{a_1b_2-a_2b_1}}



\textsf{The solution of the 2 equation lies on (x,y)}\\\\\textsf{The first coordinate is 1  }\\\\\\\textsf{Hence, value of x is 1.}



\textsf{Put this value of x in the cross multiplication formula to get :}


\implies \:\:\:\mathsf{\frac{1}{b_1c_2-b_2c_1}=\frac{1}{a_1b_2-a_2b_1}}


\implies \:\:\:\mathsf{a_1b_2-a_2b_1=b_1c_2-b_2c_1}


\implies \:\:\:\mathsf{a_1b_2+b_2c_1=b_1c_2+b_1a_2}


\implies \:\:\:\mathsf{b_2(a_1+c_1)=b_1(a_2+c_2)}


\implies \:\:\:\mathsf{\frac{b_1}{b_2}=\frac{a_1+c_1}{a_2+c_2}}




\textsf{\huge{\underline{\underline{\underline{\underline{ANSWER}}}}}}


\bf{\underline{\textsf{OPTION\:\:C}}}



\textsf{Hope it helps !}



_________________________________________________________________________


Anonymous: this is no place to chat ! stop it
Answered by BrainlyShadow
0

\textsf{Given , the two equations are : }\\\\\\</p><p></p><p></p><p></p><p>\mathsf{a_1x+b_1y+c_1=0} \\\\\\</p><p></p><p></p><p></p><p>\mathsf{a_2x+b_2+c_2=0}\\\\\\</p><p></p><p></p><p>\underline{\underline{\huge\textsf{{{Cross Multiplication Method}}}}} \\\\\\</p><p></p><p>	</p><p> </p><p>	</p><p> </p><p></p><p></p><p>\textsf{By cross multiplication method , we know that :- }\\\\\\</p><p></p><p></p><p>\mathsf{\frac{x}{b_1c_2-b_2c_1}=\frac{y}{a_2c_1-a_1c_2}=\frac{1}{a_1b_2-a_2b_1}} \\\\\\</p><p></p><p> </p><p></p><p></p><p>\implies \mathsf{\frac{x}{b_1c_2-b_2c_1}=\frac{1}{a_1b_2-a_2b_1}}\\\\\\</p><p>	</p><p> </p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p>\textsf{Put this value of x in the cross multiplication formula to get :}\\\\\\</p><p></p><p></p><p>\implies \:\:\:\mathsf{\frac{1}{b_1c_2-b_2c_1}=\frac{1}{a_1b_2-a_2b_1}}\\\\\\</p><p></p><p>	</p><p> </p><p></p><p></p><p>\implies \:\:\:\mathsf{a_1b_2-a_2b_1=b_1c_2-b_2c_1}\\\\\\</p><p></p><p>	</p><p> </p><p></p><p></p><p>\implies \:\:\:\mathsf{a_1b_2+b_2c_1=b_1c_2+b_1a_2}\\\\\\</p><p>	</p><p> </p><p></p><p></p><p>\implies \:\:\:\mathsf{b_2(a_1+c_1)=b_1(a_2+c_2)}\\\\\\</p><p></p><p></p><p>\implies \:\:\:\mathsf{\frac{b_1}{b_2}=\frac{a_1+c_1}{a_2+c_2}}\\\\\\</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p></p><p></p><p></p><p>\textsf{\huge{\underline{\underline{\underline{\underline{ANSWER}}}}}} \\\\\\</p><p></p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p></p><p></p><p>\bf{\underline{\textsf{OPTION\:\:C}}} \\\\\\</p><p></p><p>	</p><p> </p><p></p><p></p><p></p><p>\textsf{Hope it helps !}

_________________________________________________________________________

Similar questions