Math, asked by amreenfatima78691, 1 year ago

HELLO FRIENDS✨✨✨✨✨✨

PLEASE answer this question
↓↓↓↓↓↓↓↓↓↓↓↓↓
________________

if alpha and beta are the zeroes of the quadratic equation f(x)=x²-2x+3, find a polynomial whose roots are

(I)alpha+2 , beta+2.
(ii) alpha-1/alpha+1 , beta-1/beta + 1

_________________

Answers

Answered by Anonymous
35

\underline{\underline{\large{\mathfrak{Solution : }}}}



\underline{\textsf{ Given : }} \\ \\ <br /><br />\sf  \implies f(x) \: = \: x^2 \: - \: 2x \: + \:3  \\  \\  \sf \alpha \: and  \: \beta \: are \: its \: zeroes.



\textsf{Here ! } \\ \\<br /><br />\sf \implies Coefficient \: of \: x^{2} ( a ) \: = \: 1  \\ \\<br />\sf \implies Coefficient \: of \: x(b) \: = \: -2 \\ \\<br /><br />\sf \implies Constant \: term ( c) \: = \: 3


\sf Now :



\sf \implies Sum \: of \: zeroes \: = \: - \left ( \dfrac{b}{a} \right ) \\ \\<br /><br />\sf \implies \alpha \: + \: \beta \: = \: - \left( \dfrac{-2}{1} \right) \\ \\<br /><br />\sf \therefore \quad \alpha \: + \: \beta \: = \: 2  \quad...(1)


\sf And :



\sf \implies Product \: of \: zeroes \: = \: \dfrac{c}{a} \\ \\ \sf \implies \alpha \beta \: = \: \dfrac{3}{1} \\ \\ \sf \therefore \quad \alpha \beta \: = \: 3 \quad...(2)




\large{ \sf Question \: no. ( 1 )}<br />



\underline{\textsf{We know that : }}



\sf P(x) \: = \: x^{2} \: - \: ( Sum \: of \: zeroes )x \: + \: (Product \: of \: zeroes )  \\  \\  \sf \qquad \:   =  \:  {x}^{2}  \:  -  \: ( \alpha  \:  + 2 \:  +  \:  \beta  \:  +  \: 2)x \:  +  \: ( \alpha  \:  +  \: 2)( \beta  \:  +  \: 2) \\  \\  \sf \:  \qquad =   {x}^{2}  \:  -  \: ( \alpha  \:  +  \:  \beta  \:  +  \: 4)x \:  +  \:  (\alpha  \beta  \:  +  \: 2 \alpha  \:  +  \: 2 \beta  \:  +  \: 4) \\  \\  \sf \qquad \:  =  \:  {x}^{2}  \:  -  \: ( \alpha  \:  +  \:  \beta  \:  +  \: 4)x \:  +  \:  \{  \alpha  \beta  \:  +  \: 2( \alpha  \:  +  \:  \beta ) \:  +  \: 4 \}



\textsf{Plug the value of (1) and (2) :}


\sf \qquad \:  =  \:  {x}^{2}  \:  -  \: ( 2 \:  +  \: 4)x \:  +  \:  \{  3 \:  +  \: 2( 2) \:  +  \: 4 \}  \\  \\  \sf \qquad \:  =  \:  {x}^{2}  \:  -  \: 6x \:  +  \: ( \: 3 \:  +  \: 4 \:  +  \: 4) \\  \\  \sf \qquad \:  =  \:  {x}^{2}  \:  -   \: 6x \:  +  \: 11




\large{ \sf Question \: no. ( 2 )}<br />



\underline{\textsf{We know that : }}


\sf P(x) \: = \: x^{2} \: - \: ( Sum \: of \: zeroes )x \: + \: (Product \: of \: zeroes ) \\  \\   \sf\qquad \:  =  \:  {x}^{2}  \:  -  \:  \left \{ \bigg( \dfrac{ \alpha  \:  -  \: 1}{ \alpha  \:  +  \: 1}  \bigg)  \:  +  \:  \left( \dfrac{ \beta   \:  -  \: 1}{ \beta  \:  +  \: 1}  \right)\right \}x \:   +  \\  \sf \qquad \:  \:  \:  \:  \left \{ \left( \dfrac{ \alpha  \:  -  \: 1}{ \alpha  \:  +  \: 1}  \right) \left( \dfrac{ \beta  \:  -  \: 1}{ \beta  \:  +  \: 1 } \right ) \right \}




 \sf =  \:  {x}^{2}  \:  -   \:  \left \{ \dfrac{( \alpha  \:  -  \: 1)( \beta  \:  +  \: 1) \:  +  \: ( \beta  \:  -  \: 1)( \alpha  \:  +  \: 1)}{( \alpha  \:  +  \: 1)( \beta  \:  +  \: 1)}  \right \}x \:  +  \\  \sf \qquad \quad \:  \:   \left \{\dfrac{( \alpha  \:  -  \: 1)( \beta  \:  -  \: 1)}{( \alpha  \:  +  \: 1)( \beta  \:  +  \: 1)}  \right \}





 \sf =  \:  {x}^{2}  \:  -   \:  \left \{ \dfrac{ \alpha  \beta  \:  +  \:   \cancel\alpha  \:  -  \:   \cancel\beta  \:  -  \: 1\:  +  \:  \alpha  \beta  \:  -  \:   \cancel\alpha  \:  +  \:   \cancel\beta  \:  -  \: 1} {\alpha  \beta  \:  +  \:  \alpha  \:  +  \:  \beta  \:  +  \: 1}  \right \}x \:  +  \\  \sf \qquad \quad \:  \:   \left \{\dfrac{  \alpha  \beta  \:  -  \:  \alpha  \:  -  \:  \beta  \:  +  \: 1}{ \alpha  \beta  \:  +  \:  \alpha  \:  +  \:  \beta  \:  +  \: 1}  \right \}







 \sf =  \:  {x}^{2}  \:  -   \:  \left \{ \dfrac{ 2 \alpha  \beta  \:  -  \: 2} {\alpha  \beta  \:  +  \: ( \alpha  \:  +  \:  \beta ) \:  +  \: 1}  \right \}x \:  +  \\  \sf \qquad \quad \:  \:   \left \{\dfrac{  \alpha  \beta  \: -  \:  (   \alpha  \:   +   \:  \beta ) \:  +  \: 1}{ \alpha  \beta  \:  +  \: ( \alpha  \:  +  \:  \beta)  \:  +  \: 1}  \right \}





\textsf{Plug the value of (1) and (2) :}



 \sf =  \:  {x}^{2}  \:  -   \:  \left \{ \dfrac{ 2  \:  \times  \: 3  \:  -  \: 2} {3 \:  +  \: 2\:  +  \: 1}  \right \}x \: +  \:   \left \{\dfrac{  3  \: -  \:  2\:  +  \: 1}{ 3  \:  +  \: 2\:  +  \: 1}  \right \}



 \sf =  \:  {x}^{2}  \:  -   \:  \left \{ \dfrac{ 6\:  -  \: 2} {6}  \right \}x \: +  \:   \left \{\dfrac{  4 \:  -  \: 2}{ 6}  \right \}



 \sf =  \:  {x}^{2}  \:  -   \:  \left \{ \dfrac{4} {6}  \right \}x \: +  \:   \left \{\dfrac{  2}{ 6}  \right \}



 \sf =  \:  {x}^{2}  \:  -   \: \dfrac{2} {3}  x \: +  \:   \dfrac{  1}{ 3}


\underline{\textsf{Multiply by 3 ,}}


 \sf =  \: 3 \left( {x}^{2}  \:  -   \: \dfrac{2} {3}  x \: +  \:   \dfrac{  1}{ 3}   \right)


 \sf =  \: 3 {x}^{2}  \:  -   \: 3 \left(\dfrac{2} {3}  x  \right)\: +  \:    3\left(\dfrac{  1}{ 3}   \right)   \\  \\  =   \sf\: 3 {x}^{2}  \:  -  \: 2x \:  +  \: 1


Similar questions