❤️❤️❤️❤️HELLO FRIENDS ❤️❤️❤️
please solve this question.
✨✨✨✨✨✨
Answers
Let the four consecutive numbers in AP be a,a + d, a + 2d, a + 3d.
Given that Sum of four consecutive numbers is 32.
⇒ a + a + d + a + 2d + a + 3d = 32
⇒ 4a + 6d = 32
⇒ 2a + 3d = 16 ------- (1)
Now,
Product of first and last terms to the product of two middle terms is 7:15.
⇒ (a)(a + 3d)/(a + d)(a + 2d) = 7/15
⇒ 15(a^2 + 3ad) = 7(a^2 + 2ad + ad + 2d^2)
⇒ 15(a^2 + 3ad) = 7(a^2 + 3ad + 2d^2)
⇒ 15a^2 + 45ad = 7a^2 + 21ad + 14d^2
⇒ 8a^2 + 24ad - 14d^2 = 0
⇒ 4a^2 + 12ad - 7d^2 = 0
⇒ 4a^2 + 14ad - 2ad - 7d^2 = 0
⇒ 2a(2a + 7d) - d(2a + 7d) = 0
⇒ (2a - d)(2a + 7d) = 0
⇒ 2a = d (or) 2a = -7d.
Substitute 2a = d in (1), we get
⇒ 2a + 3d = 16
⇒ 4d = 16
⇒ d = 4.
Substitute d = -7d in (1), we get
⇒ 2a + 3d = 16
⇒ -7d + 3d = 16
⇒ -4d = 16
⇒ d = -4.
When d = -4:
⇒ 2a + 3d = 16
⇒ 2a + 3(-4) = 16
⇒ 2a - 12 = 16
⇒ 2a = 28
⇒ a = 14.
When d = 4:
⇒ 2a + 3d = 16
⇒ 2a + 12 = 16
⇒ 2a = 4
⇒ a = 2.
So, the four consecutive numbers are 14,10,6,2 (or) 2,6,10,14.
Hope this helps!