Hello friends !!
(Q.1) d²x/dt² + 16x = 0 find time period of S.H.M
(Q. 2) If v vs x graph is circle and max speed is 20mm . find Amplitude of S.H.M
Answers
Hi
2 answers · Mathematics
Best Answer
Find the general solution by solving the auxiliary equation:
d²x / dt² + 16x = 0
m² + 16 = 0
m² = -16
m = ±4i
y = C₁sin(4t) + C₂cos(4t)
Find the particular solution by solving for the constants:
When t = 0, x = 3
C₂ = 3
y' = 4C₁cos(4t) - 4C₂sin(4t)
When t = 0, dx / dt = 16
4C₁ = 16
C₁ = 4
y = 4sin(4t) + 3cos(4t)
Rewrite this result as a single trigonometric function by comparing coefficients:
4sin(4t) + 3cos(4t) = ksin(4t + α)
4sin(4t) + 3cos(4t) = k[sin(4t)cosα + sinαcos(4t)]
4sin(4t) + 3cos(4t) = (kcosα)sin(4t) + (ksinα)cos(4t)
kcosα = 4
ksinα = 3
(ksinα)² + (kcosα)² = 4² + 3²
k²sin²α + k²cos²α = 25
k²(sin²α + cos²α) = 25
k² = 25
k = 5
ksinα / (kcosα) = ¾
sinα / cosα = ¾
tanα = ¾
α = tanˉ¹(¾)
4sin(4t) + 3cos(4t) = 5sin[4t + tanˉ¹(¾)]
x = 5sin[4t + tanˉ¹(¾)]
Find the maximum values by taking the values of the amplitudes:
x = 5sin[4t + tanˉ¹(¾)]
max(x) = 5 m
dx / dt = 20cos[4t + tanˉ¹(¾)]
max(dx / dt) = 20 m / s
____________________________
Q. 1 )
Solution :- d²x / d²t + w²x = 0 (equation )
comparing d²x/d²t + 16x to equation
Since, se get
w² = 16
w = 4
w = 4
but , w = 2π/t
=> 2π /T= 4
T = π/2 second Answer ✔
___________________________
Question :- 2
w = 1 rad/s
Vmax = 20mm /s
WA = 20mm/s
1 * A = 20mm/s
A = 20mm Answer ✔
_____________________________