Math, asked by Qvoeba26jd, 1 year ago

hello guys

please answer

the equation of line passing the point of intersection of lines 3x+2y+4=0, 2x+5y-1=0 and whose distance from the point (2,-1) is 2 is


Qvoeba26jd: try by perpindicular distance

Answers

Answered by TPS
44
The equation of a line passing through the intersection of 3x+2y+4=0 and 2x+5y-1=0 is given by:

k(3x+2y+4) + 2x+5y-1 = 0

=> (3k+2)x + (2k+5)y + 4k-1 = 0

Now, distance of the above line from (2,-1) is 2.

 \Rightarrow \frac{| (3k+2) \times 2 + (2k+5) \times (-1) + 4k-1 | }{\sqrt{(3k+2)^2 + (2k+5)^2}}  = 2 \\  \\ \Rightarrow \frac{| 6k + 4  -  2k - 5 + 4k-1 | }{\sqrt{9 {k}^{2}  + 12k + 4 + 4 {k}^{2}  + 20k + 25}}  = 2 \\  \\ \Rightarrow \frac{| 8k - 2 | }{\sqrt{13 {k}^{2}  + 32k + 29}}  = 2 \\  \\ \Rightarrow | 8k - 2 |  = 2\sqrt{13 {k}^{2}  + 32k + 29} \\  \\


\text{Square both sides}\\ \\ \Rightarrow | 8k - 2 | ^2 =  \big(2\sqrt{13 {k}^{2}  + 32k + 29} \:  \big)^2 \\  \\ \Rightarrow 64 {k}^{2}  - 32k + 4 = 4(13 {k}^{2}  + 32k + 29) \\  \\ \Rightarrow 64 {k}^{2}  - 32k + 4 = 52 {k}^{2}  + 128k + 116\\  \\ \Rightarrow (64  - 52){k}^{2}  -( 32 + 128)k + 4 - 116 = 0 \\  \\ \Rightarrow 12 {k}^{2}  - 160k  - 112 =0 \\  \\ \Rightarrow 3 {k}^{2}  - 40k  - 28 =0 \\  \\ \Rightarrow 3 {k}^{2}  - 42k  + 2k - 28 =0 \\  \\ \Rightarrow 3k(k  -14)  + 2(k  - 14) =0 \\  \\ \Rightarrow (3k + 2)(k  -14)  = 0 \\  \\ \Rightarrow k =  \frac{ - 2}{3}  \:  \: and \:  \: 14
___________________________

\text{If k = 14, the line is}\\ \\ (3k+2)x + (2k+5)y + 4k-1 = 0\\ \\ \Rightarrow (3 \times 14+2)x + (2 \times 14+5)y + 4 \times 14 -1 = 0\\ \\ \Rightarrow 44x+33y+55=0\\ \\  \Rightarrow 11(4x+3y+5)=0\\ \\  \Rightarrow \boxed{  \bold{\red{ 4x+3y+5=0}}}


\text{If k =  $\frac{ - 2}{3}$ , the line is}\\ \\ (3k+2)x + (2k+5)y + 4k-1 = 0\\ \\ \Rightarrow (3 \times \frac{ - 2}{3}+2)x + (2 \times \frac{ - 2}{3}+5)y + 4 \times \frac{ - 2}{3} -1 = 0\\ \\ \Rightarrow 0 \times x+\bigg(\frac{ - 4}{3}+5 \bigg) y+\bigg( \frac{-8}{3}-1 \bigg)=0\\ \\  \Rightarrow  \frac{11}{3}  \: y -  \frac{11}{3}  = 0 \\  \\ \Rightarrow  \frac{11}{3}(y  - 1) = 0 \\  \\ \Rightarrow \boxed{  \bold{\red{y  -  1 = 0}}}

ravi34287: thank u so much
TPS: You are welcome:))
ravi34287: hi
ravi34287: why u took k(3x+2y+4)+2x+5y-1=0
ravi34287: please say
ravi34287: why u took
Qvoeba26jd: please say
TPS: Read the first sentence of answer. That's why
Qvoeba26jd: ok
Similar questions