hello guys..
plz help me...
its urgent....
"explain the properties of ratio"
here's the question
Answers
• Product of extremes = product of means i.e., ad = bc
• a, b, c, d,…. are in continued proportion means, a:b = b:c = c:d
• a:b = b:c then b is called mean proportional and b2 = ac
• The third proportional of two numbers, a and b, is c, such that, a:b = b:c
• d is fourth proportional to numbers a, b, c if a:b = c:d
Step-by-step explanation:
- Invertendo Property: For four numbers a, b, c, d if a : b = c : d, then b : a = d : c; that is, if two ratios are equal, then their inverse ratios are also equal.
If a : b :: c : d then b : a :: d : c.
Proof:
a : b :: c : d
⟹ ab = cd
⟹ ba = dc
⟹ b : a :: d : c
II. Alternendo Property: For four numbers a, b, c, d if a : b = c : d, then a : c = b : d; that is, if the second and third term interchange their places, then also the four terms are in proportion.
If a : b :: c : d then a : c :: b : d.
Proof:
a : b :: c : d
⟹ ab = cd
⟹ ab ∙ bc = cd ∙ bc
⟹ ac = bd
⟹ a : c :: b : d
Example: If 3 : 5 = 6 : 10 then 3 : 6 = 1 : 2 = 5 : 10
III. Componendo Property: For four numbers a, b, c, d if a : b = c : d then (a + b) : b :: (c + d) : d.
Proof:
a : b :: c : d
⟹ ab = cd
Adding 1 to both sides of ab = cd, we get
⟹ ab + 1 = cd + 1
⟹ a+bb = c+dd
⟹ (a + b) : b = (c + d) : d
Example: 4 : 5 = 8 : 10
Therefore, (4 + 5) : 5 = 9 : 5 = 18 : 10
= (8 + 10) : 10
o
IV: Dividendo Property
If a : b :: c : d then (a - b) : b :: (c - d) : d.
Proof:
a : b :: c : d
⟹ ab = cd
Subtracting 1 from both sides,
⟹ ab - 1 = cd - 1
⟹ a−bb = c−dd
⟹ (a - b) : b :: (c - d) : d
Example: 5 : 4 = 10 : 8
Therefore, (5 - 4) : 4 = 1 : 4 = (10 - 8) : 8
V. Convertendo Property
If a : b :: c : d then a : (a - b) :: c : (c - d).
Proof:
a : b :: c : d
⟹ ab = cd ............................... (i)
⟹ ab - 1 = cd - 1
⟹ a−bb = c−dd ............................... (ii)
Dividing (i) by the corresponding sides of (ii),
⟹ aba−bb=cdc−dd
⟹ aa−b = cc−d
⟹ a : (a - b) :: c : (c - d).
VI. Componendo-Dividendo Property
If a : b :: c : d then (a + b) : (a - b) :: (c + d) : (c - d).
Proof:
a : b :: c : d
⟹ ab = cd
⟹ ab + 1 = cd + 1 and ab - 1 = cd - 1
⟹ a+bb = c+dd and a−bb = c−dd
Dividing the corresponding sides,
⟹ a+bba−bb=c+ddc−dd
⟹ a+ba−b = c+dc−d
⟹ (a + b) : (a - b) :: (c + d) : (c - d).
Writing in algebraic expressions, the componendo-dividendo property gives the following.
ab = cd ⟹ (a + b) : (a - b) :: (c + d) : (c - d)
Note: This property is frequently used in simplification.
Example: 7 : 3 = 14 : 6
(7 + 3) : ( 7 - 3) = 10 : 4 = 5 : 2
Again, (14 + 6) : (14 - 6) = 20 : 8 = 5 : 2
Therefore, ( 7 + 3) : ( 7 - 3) = ( 14 + 6) : ( 14 - 6)
VII: Addendo Property:
If a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)
Proof:
a : b = c : d = e : f
Let, ab = cd = ef = k (k ≠ 0).
Therefore, a = bk, c = dk, e = fk
Now, a+c+eb+d+f = bk+dk+fkb+d+f = k(b+d+f)b+d+f = k
Therefore, ab = cd = ef = a+c+eb+d+f
That is, a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)
Note: If a : b = c : d = e : f, then the value of each ratio will be am+cn+epbm+dn+fp where m, n, p may be non zero number.]
VIII: Equivalent ratio property
If a : b :: c : d then (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d
Proof:
a : b :: c : d
Let, ab = cd = k (k ≠ 0).
Therefore, a = bk, c = dk.
Now, a±cb±d = bk±dkb±d = k(b±db±d = k = ab = cd .
Therefore, (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d.
Algebraically, the property gives the following.
ab = cd ⟹ ab = cd = a+cb+d = a−cb−d
Similarly, we can prove that
ab = cd ⟹ ab = cd = pa+qcpb+qd
ab = cd = ef ⟹ ab = cd = ef = a+c+eb+d+f = ap+cq+erbp+dq+fr
For example:
1. ab = cd = ab = cd = 2a+3c2b+3d = ab+cdb2+d2, etc.
2. ab = cd = ef ⟹ ab = cd = ef = a+2c+3eb+2d+3f = 4a–3c+9e4b–3d+9f, etc.