Math, asked by Anonymous, 1 year ago

HELLO MATES

HERE IS A QUESTION FOR YOU

I WANT ANSWER OF ABOVE QUESTION.

☜☆☞NO SPAMMIMG

^_^ THANX IN ADVANCE ​

Attachments:

Swarup1998: last one and the just before one are same??

Answers

Answered by Swarup1998
20

The give polynomial is

P(x) = 3x^{2}+2x-6

Since \alpha and \beta are the zeroes of P(x), by the relation between zeroes and coefficients, we get

\alpha+\beta=-\frac{2}{3}

\alpha\beta=\frac{-6}{3}=-2

(i)

Now, (\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4\alpha\beta

\implies (\alpha-\beta)^{2}=(-\frac{2}{3})^{2}-4(-2)

\implies (\alpha-\beta)^{2}=\frac{4}{9}+8=\frac{76}{9}

\implies \boxed{\alpha-\beta=\pm \frac{2\sqrt{19}}{3}}

(ii)

Now, {\alpha}^{2}+{\beta}^{2}=(\alpha+\beta)^{2}-2\alpha\beta

\implies {\alpha}^{2}+{\beta}^{2}=(-\frac{2}{3})^{2}-2(-2)

\implies {\alpha}^{2}+{\beta}^{2}=\frac{4}{9}+4

\implies \boxed{{\alpha}^{2}+{\beta}^{2}=\frac{40}{9}}

(iii)

Now, {\alpha}^{3}+{\beta}^{3}=(\alpha+\beta)({\alpha}^{2}+{\beta}^{2}-\alpha\beta)

\implies {\alpha}^3+{\alpha}^{3}=-\frac{2}{3}(\frac{40}{9}+2)

\implies {\alpha}^{3}+{\beta}^{3}=-\frac{2}{3}\times \frac{58}{9}

\implies \boxed{{\alpha}^{3}+{\beta}^{3}=-\frac{116}{27}}

(iv)

Now, \frac{1}{\alpha}+\frac{1}{\beta}

=\frac{\beta+\alpha}{\alpha\beta}

\implies \frac{1}{\alpha}+\frac{1}{\beta}=\frac{-\frac{2}{3}}{-2}

\implies \boxed{\frac{1}{\alpha}+\frac{1}{\beta}=\frac{1}{3}}

(v)

Now, {\alpha}^{3}{\beta}^{3}=(\alpha\beta)^{3}

\implies {\alpha}^{3}{\beta}^{3}=(-2)^{3}

\implies \boxed{{\alpha}^{3}{\beta}^{3}=-8}


Anonymous: thanx for help
Swarup1998: Happy to help :-)
Anonymous: ok
Anonymous: whom should I mark as brainliest
Swarup1998: That's a wrong question ^^" your wish dear
Answered by skh2
7
p(x) = 3 {x}^{2} + 2x - 6

 \alpha \:and\: \beta are zeroes of the polynomial.

Therefore :-

sum \: of \: zeroes= \frac{ - b}{a} = \frac{ - 2}{3} \\ \\ \\product \: of \: zeroes = \frac{c}{a} = \frac{ - 6}{3} \\ = ( - 2)

 \rule{200}{2}

Now,

 \boxed{ \red{ \sf{(i) \alpha - \beta}}}

 {( \alpha - \beta )}^{2} = { \alpha }^{2} + { \beta }^{2} - 2 \alpha \beta \\ \\ \\ {( \alpha - \beta )}^{2} = {( \alpha + \beta )}^{2} - 4 \alpha \beta \\ \\ \\ {( \alpha - \beta )}^{2} = {( \frac{ - 2}{3})}^{2} - 4( - 2) \\ \\ \\ {( \alpha - \beta )}^{2} = \frac{4}{9} + 8 = \frac{4 + 72}{9} \\ \\ {( \alpha - \beta )}^{2} = \frac{76}{9} \\ \\ \\ \alpha - \beta = \pm\sqrt{ \frac{76}{9} } \\ \\ \\ \alpha - \beta = \pm \frac{2}{3} \sqrt{19}

 \rule{200}{2}

 \boxed{ \orange{(ii) { \alpha }^{2} + { \beta }^{2}}}

 { \alpha }^{2} + { \beta }^{2} = {( \alpha + \beta )}^{2} - 2 \alpha \beta \\ \\ \\ { \alpha }^{2} + { \beta }^{2} = {( \frac{ - 2}{3})}^{2} - 2( - 2) \\ \\ \\ { \alpha }^{2} + { \beta }^{2} = \frac{4}{9} + 4 \\ \\ \\ { \alpha }^{2} + { \beta }^{2} = \frac{4 + 36}{9} \\ \\ \\ { \alpha }^{2} + { \beta }^{2} = \frac{40}{9}

 \rule{200}{2}

 \boxed{ \green{(iii) { \alpha }^{3} + { \beta }^{3}}}

 { \alpha }^{3} + { \beta }^{3} =( \alpha + \beta )( { \alpha }^{2} + { \beta }^{2} - \alpha \beta ) \\ \\ \\ = (\dfrac{-2}{3})(\dfrac{40}{9} - (-2))\\ \\ \\=\dfrac{-2}{3} \times \dfrac{58}{9}=\dfrac{-116}{27}

 \rule{200}{2}

 \boxed{\red{(iv) \dfrac{1}{\alpha}+\dfrac{1}{\beta}}}

 \frac{1}{ \alpha } + \frac{1}{ \beta } = \frac{ \alpha + \beta }{ \alpha \beta } \\ \\ \\ = \frac{ \frac{ - 2}{3} }{ - 2} = \frac{1}{3}

 \rule{200}{2}

 \boxed{\blue{\alpha^{3} \beta^{3}}}

 { \alpha }^{3}{ \beta }^{3} = {( \alpha \beta )}^{3} \\ \\ \\ = {( - 2)}^{3} = ( - 8)

 \rule{200}{2}

Swarup1998: alpha^3 + beta^3 ??
Swarup1998: last one...
Anonymous: whom should I mark as brainliest
skh2: sorry! by mistake! Thanks swarup bhaiy
skh2: bhaiya!
Similar questions