Hello please help me to solve these
© if A + B + C = 180 ° and SinA + SinBSinC = 0 then prof that 2 TanB + TanC = 0
Answers
Answered by
17
Hey there !!!!
~~~~~~~~~~~~~~~~~~~~~~
A+B+C=180°
A= 180°-(B+C)
Applying "sin" on both sides
sinA =sin(180-(B+C))--- Equation1
We know that sin(180-∅) = sin∅
sin(180-(B+C) ) =sin(B+C)
So, equation1 changes to
sinA= sin(B+C)
According to question sinA+sinBcosC=0
sinA=-sinBcosC
sin(B+C) = -sinBcosC=sinA
Now
2TanB+TanC
= 2sinB/cosB + sinC/cosC
= (2sinBcosC+sinCcosB)/cosBcosC
=sinBcosC+sinBcosC+sinCcosB/cosBcosC
But sinBcosC+sinCcosB=sin(B+C)
=sinBcosC+sin(B+C)/cosBcosC
= sinBcosC+sinA/cosBcosC
=sinBcosC-(sinBcosC)/cosBcosC
= 0
LHS=RHS
~~~~~~~~~~~~~~~~~~~
Hope this helped you.......
~~~~~~~~~~~~~~~~~~~~~~
A+B+C=180°
A= 180°-(B+C)
Applying "sin" on both sides
sinA =sin(180-(B+C))--- Equation1
We know that sin(180-∅) = sin∅
sin(180-(B+C) ) =sin(B+C)
So, equation1 changes to
sinA= sin(B+C)
According to question sinA+sinBcosC=0
sinA=-sinBcosC
sin(B+C) = -sinBcosC=sinA
Now
2TanB+TanC
= 2sinB/cosB + sinC/cosC
= (2sinBcosC+sinCcosB)/cosBcosC
=sinBcosC+sinBcosC+sinCcosB/cosBcosC
But sinBcosC+sinCcosB=sin(B+C)
=sinBcosC+sin(B+C)/cosBcosC
= sinBcosC+sinA/cosBcosC
=sinBcosC-(sinBcosC)/cosBcosC
= 0
LHS=RHS
~~~~~~~~~~~~~~~~~~~
Hope this helped you.......
Answered by
13
Hi ,
A + B + C = 180
B + C = 180 - C
take sin both sides,
sin( B + C ) = Sin ( 180 - A )
= Sin A ------( 1 )
SinA + SinBSinC = 0 ----( 2 )
according to the problem given,
LHS = 2 TanB+ Tan C
= Tan B+ Tan B + Tan C
= SinB / CosB + SinB / CosB + SinC/CosC
= (sinBCosC+SinBCosC+SinCCosB)/cosBcosC
= [sinBcosC+(sinBcosC+sinCcosB)]/cosBcosC
=[sinAcosC+sin(B+C)]/(cosBcosC
[since sinBcosC+sinCcosB = sin(B+C) ]
= [ sinAcosC+SinA ] /( cosBcosC) [ from ( 1 )]
= 0 / cosBcosC [ from ( 2 ) ]
= 0
= RHS
Hence proved.
I hope this helps you.
:)
A + B + C = 180
B + C = 180 - C
take sin both sides,
sin( B + C ) = Sin ( 180 - A )
= Sin A ------( 1 )
SinA + SinBSinC = 0 ----( 2 )
according to the problem given,
LHS = 2 TanB+ Tan C
= Tan B+ Tan B + Tan C
= SinB / CosB + SinB / CosB + SinC/CosC
= (sinBCosC+SinBCosC+SinCCosB)/cosBcosC
= [sinBcosC+(sinBcosC+sinCcosB)]/cosBcosC
=[sinAcosC+sin(B+C)]/(cosBcosC
[since sinBcosC+sinCcosB = sin(B+C) ]
= [ sinAcosC+SinA ] /( cosBcosC) [ from ( 1 )]
= 0 / cosBcosC [ from ( 2 ) ]
= 0
= RHS
Hence proved.
I hope this helps you.
:)
mysticd:
:)
Similar questions