Math, asked by Anonymous, 1 year ago

❤Hello User❤

✏✏✏Have some attention plz ✏✏✏


Sinx/1+cosx +tanx/1+cosx = secx cscx -cotx


❎❎❎No spam❎❎❎

Answers

Answered by Anonymous
186

Solution:-

Taking LHS

 \frac{ \sin(x) }{1 +  \cos(x) }  +  \frac{ \tan(x) }{1 +  \cos(x) }  \\  \\  =  \frac{ \sin(x) +  \frac{ \sin(x) }{ \cos(x) }  }{1 +  \cos(x) }  \\  \\  =  \frac{ \sin(x)( 1 +  \cos(x) )}{ \cos(x) (1 +  \cos(x) )}  \\  \\  =  \tan(x)

Now RHS

 \sec(x  )  \csc(x)  -  \cot(x)  \\  \\  =  \frac{1}{ \cos(x)  \sin(x) }  -  \frac{ \cos(x) }{ \sin(x) }  \\  \\  =  \frac{1}{ \sin(x) } ( \frac{1}{ \cos(x) }  -  \cos(x) ) \\  \\  =  \frac{1 -  { \cos }^{2} x}{ \sin(x)  \cos(x) }  \\  \\  =  \frac{ \sin {}^{2} (x) }{ \sin(x) \cos(x)  }  \\  \\  =  \frac{ \sin(x) }{ \cos(x) }  \\  \\  =  \tan(x)

LHS = RHS

Hence, proved


Anonymous: Superb!
Anonymous: Thanks
Anonymous: Nice....!
Answered by Anonymous
15

Answer:

REFER TO ATTACHMENT FOR SOLUTION.

❣️ Regards KarnShubham ❣️

Attachments:
Similar questions