Math, asked by devvrats007, 8 months ago

help asap pls due today The graph of $y = f(x)$ is shown below. Assume the domain of $f$ is $[-4,4]$ and that the vertical spacing of grid lines is the same as the horizontal spacing of grid lines. [asy] size(150); real ticklen=3; real tickspace=2; real ticklength=0.1cm; real axisarrowsize=0.14cm; pen axispen=black+1.3bp; real vectorarrowsize=0.2cm; real tickdown=-0.5; real tickdownlength=-0.15inch; real tickdownbase=0.3; real wholetickdown=tickdown; void rr_cartesian_axes(real xleft, real xright, real ybottom, real ytop, real xstep=1, real ystep=1, bool useticks=false, bool complexplane=false, bool usegrid=true) { import graph; real i; if(complexplane) { label("$\textnormal{Re}$",(xright,0),SE); label("$\textnormal{Im}$",(0,ytop),NW); } else { label("$x$",(xright+0.4,-0.5)); label("$y$",(-0.5,ytop+0.2)); } ylimits(ybottom,ytop); xlimits( xleft, xright); real[] TicksArrx,TicksArry; for(i=xleft+xstep; i 0.1) { TicksArrx.push(i); } } for(i=ybottom+ystep; i 0.1) { TicksArry.push(i); } } if(usegrid) { xaxis(BottomTop(extend=false), Ticks("%", TicksArrx ,pTick=gray(0.22),extend=true),p=invisible);//,above=true); yaxis(LeftRight(extend=false),Ticks("%", TicksArry ,pTick=gray(0.22),extend=true), p=invisible);//,Arrows); } if(useticks) { xequals(0, ymin=ybottom, ymax=ytop, p=axispen, Ticks("%",TicksArry , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize)); yequals(0, xmin=xleft, xmax=xright, p=axispen, Ticks("%",TicksArrx , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize)); } else { xequals(0, ymin=ybottom, ymax=ytop, p=axispen, above=true, Arrows(size=axisarrowsize)); yequals(0, xmin=xleft, xmax=xright, p=axispen, above=true, Arrows(size=axisarrowsize)); } }; rr_cartesian_axes(-5,5,-5,6); draw((-4,4)--(-1,0)--(0,2)--(4,-4),red); [/asy] Part (a): The points $(a,4)$ and $(b,-4)$ are on the graph of $y = f\left( 2x \right).$ Find $a$ and $b.$ Part (b): Find the graph of $y = f\left( 2x \right).$ Verify that your points from part (a) are on the graph. Part (c): The points $(c,4)$ and $(d,-4)$ are on the graph of $y = f\left( 2x - 8 \right).$ Find $c$ and $d.$ Part (d): Find the graph of $y = f\left( 2x - 8 \right).$ Be sure to verify that your points from part (c) are on the graph both algebraically and geometrically. This week, it is important that your submission includes graphs.

Answers

Answered by shristi2005
14

Answer:

Wht..............................................................

Answered by 29prishag
2

Answer:

( 1, 3 )

Step-by-step explanation:

If the graphs intersect at ( a , b ) then,

$$h(a) = h(a-3) = b.$$

So,

$(a,b)$ and $(a-3,b)$ are both on the original graph of $y=h(x)$. Looking for two points on the original graph which are separated by 3 units horizontally, we find $(-2,3)$ and $(1,3)$.  So $a-3=-2,$ $a=1,$ and $b=3;$ the graphs of $y=h(x)$ and $y=h(x-3)$ intersect at :

$\boxed{(1,3)}$.

Next time, please try to insert a picture of the graph.

This problem is difficult, so feel free to ask questions. : )

Reference :

Parabolas ; y = a( x - h ) ^2 + k

Similar questions