Math, asked by deepak7444, 1 year ago

help for me 14 th question ​

Attachments:

Answers

Answered by Balaronaldo77
0

If the median of the following data is 32.5, find the missing frequencies.

Class interval:

0−10

10−20

20−30

30−40

40−50

50−60

60−70

Total

Frequency:

f1

5

9

12

f2

3

2

4

Ask for details FollowReport by BrainlyHelper 17.01.2019

Answers

Balaronaldo77

Balaronaldo77 · Ambitious

Know the answer? Add it here!

nikitasingh79

Nikitasingh79 ★ Brainly Teacher ★

SOLUTION :

CUMULATIVE FREQUENCY TABLE is in the attachment.

Given : Median = 32.5 , which belongs to the class 30 - 40 . So the Median class is 30 - 40

Given : n(Σfi) = 40

Here, n = 40

n/2 = 20

From the table , l = 30, f = 12, cf = (14 + f1) , h = 10

MEDIAN = l + [(n/2 - cf )/f ] ×h

32.5 = 30 +[ 20- (14+f1)/12] ×10

32.5 - 30 = [(20- 14 + f1)/12] ×10

2.5 =[ (6 - f1)/12 ]×10

2.5 × 12 = 60 -10 f1

30 - 60= -10f1

-30 = -10f1

f1 = 30/10 = 3

f1 = 3

Given : Σfi = 40

31 + f1 + f2 = 40 [from the table]

f1 + f2 = 40 - 31

3 + f2 = 9 [f1 = 3]

f2 = 9 - 3

f2 = 6

Hence, the missing frequencies be f1 = 3 and f2 = 6

★★ MEDIAN = l + [(n/2 - cf )/f ] ×h

Where,

l = lower limit of the median class

n = number of observations

cf = cumulative frequency of class interval preceding the median class

f = frequency of median class

h = class size

HOPE THIS ANSWER WILL HELP YOU…

Similar questions