Math, asked by rahul1842, 1 year ago

help me.................

Attachments:

Answers

Answered by Anonymous
14
==================================
 \underline\bold{\huge{ANSWER \: :}}
==================================


(1+tan²A)/(1+cot²A)

= {1+(sin²A/cos²A)}/{1+(cos²A/sin²A)}

= {(cos²A+sin²A)/cos²A}/{(sin²A+cos²A)/sin²A}

= (1/cos²A) × (sin²A/1)

= sin²A/cos²A

= tan²A [OPTION (D)]



==================================

\bold{ALWAYS\: \: BE \: \: BRAINLY}

==================================
Answered by Avengers00
14
\underline{\underline{\Huge{\textbf{Question:}}}}

\dfrac{1+tan^{2}\: A}{1+cot^{2}\: A} ———[1]

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\underline{\huge{\textsf{Step-1:}}}
Using the Identities
\bigstar\: \mathbf{sec^{2}\: \theta-tan^{2}\: \theta=1}
\bigstar\: \mathbf{cosec^{2}\: \theta-cot^{2}\: \theta=1}

\implies 1+tan^{2}\: A= sec^{2}\: A ———[2]
\implies 1+cot^{2}\: A= cosec^{2}\: A———[3]

\\

\underline{\huge{\textsf{Step-2:}}}
Substitute [2]& [3] in [1]

\implies \dfrac{sec^{2}\: A}{cosec^{2}\: A} ———[4]

\\

\underline{\huge{\textsf{Step-3:}}}
Express [4] in terms of sine and cosine and Simplify

\implies \dfrac{\frac{1}{cos^{2}\: A}}{\frac{1}{sin^{2}\: A}}

\implies \dfrac{1}{cos^{2}\: A} \times \dfrac{sin^{2}\: A}{1}

\implies \dfrac{cos^{2}\: A}{sin^{2}\: A}

Since,
\bigstar\: \mathbf{tan\: \theta= \dfrac{sin\: \theta}{cos\: \theta}}

\implies tan^{2}\: A

This Answer exists in Option-D

\therefore
\blacksquare\: \mathbf{\dfrac{1+tan^{2}\: A}{1+cot^{2}\: A}= \underline{\large{tan^{2}\: A}}}
Similar questions