help me.................
Attachments:
Answers
Answered by
14
==================================
==================================
(1+tan²A)/(1+cot²A)
= {1+(sin²A/cos²A)}/{1+(cos²A/sin²A)}
= {(cos²A+sin²A)/cos²A}/{(sin²A+cos²A)/sin²A}
= (1/cos²A) × (sin²A/1)
= sin²A/cos²A
= tan²A [OPTION (D)]
==================================
==================================
==================================
(1+tan²A)/(1+cot²A)
= {1+(sin²A/cos²A)}/{1+(cos²A/sin²A)}
= {(cos²A+sin²A)/cos²A}/{(sin²A+cos²A)/sin²A}
= (1/cos²A) × (sin²A/1)
= sin²A/cos²A
= tan²A [OPTION (D)]
==================================
==================================
Answered by
14
———[1]
Using the Identities
———[2]
———[3]
Substitute [2]& [3] in [1]
———[4]
Express [4] in terms of sine and cosine and Simplify
Since,
This Answer exists in Option-D
Similar questions