Math, asked by amitkumar44481, 1 year ago

help me for solution..........​

Attachments:

Answers

Answered by Anonymous
4

 \large{\huge{\underline \mathbb{  \overline { \mid{ \blue{Question :  - } \mid}}}} } \\ x - y = 4 \: and \: xy = 45 \\To  \: find = x {}^{3}  -  {y}^{3}  \\  \\  \large{\huge{\underline \mathbb{  \overline { \mid{ \red{Answer :  - } \mid}}}} } \\  \\ (x - y) {}^{3}  =  {x}^{3}   -  {y}^{3}  - 3 {x}^{2} y + 3xy {}^{2}  \\  \\ 4 {}^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y) \\  \\ 64 = x {}^{3}  -  {y}^{3}  - 3(45)(4) \\  \\ 64 =  {x}^{3}  -  {y}^{3}  - 540 \\  \\  \large\boxed{ \purple{ 604 =  {x}^{3}  -  {y}^{3}} }\\  \\ \blue{  so \: the \: value \: of \: x {}^{3}  -  {y}^{3 \: } comes}  \\ \blue{ out \: to \: be \: 604.} \\ \\    \boxed{ \large \pink{Formula  \: applied :  - }} \\  \\ (x - y) {}^{3}   = x {}^{3}  -  {y}^{3}   - 3x {}^{2} y + 3xy {}^{2}

Answered by 10Saffron
0

Answer:

 {(x - y)}^{3}  =  {x}^{3}  -  {y}^{3}  - 3 {x}^{2}y \:  + 3x {y}^{2}

 {x}^{3}  -  {y}^{3}  =  {(x - y)}^{3}  + 3 {x}^{2}y \:  - 3x {y}^{2}

x - y = 4 \: and \: \\  xy = 45 \:  \:  (given)

substituting \: all \: the \: values

 =  {4}^{3}  + 3( {x}^{2}y  - x {y}^{2})

 = 64 + 3(45x - 45y)

 = 64 + 135(4) \\  = 64 + 540 \\  = 604

hope \: it \: helps \: you \\  \\ mark \: me \: as \: brainliest....

Similar questions