Math, asked by dsdted356, 1 year ago

HELP ME GUYS YOU ARE GREAT.... ​

Attachments:

Answers

Answered by deepsen640
4

ANSWER

 \boxed{ \large{ {x}^{2} -  \frac{ \large{7}} { \large{2}}x  + 3 } }

STEP BY STEP EXPLANATION

Given,

6y² - 7y + 2

6y² - 3y - 4y + 2

3y(2y - 1) -2(2y - 1)

(3y - 2)(2y - 1)

3y - 2 = 0

3y = 2

 \large{y =  \frac{ \large{2}}{ \large{3}} }

2y - 1 = 0

2y = 1

 \large{y =  \frac{ \large{1}}{ \large{2}} }

 \alpha  =  \large{\frac{ \large{2}}{ \large{3}} }

 \beta  =  \large{  \frac{ \large{1}}{ \large{2}} }

 \large{  \frac{ \large{1}}{ \large{ \alpha }}  =  \large{\frac{ \large{3}}{ \large{2}} }}

 \large{  \frac{ \large{1}}{ \large{  \beta  }}  =  \large{{ \large{2}} }}

Equation whose zeroes will

 \large{  \frac{ \large{1}}{ \large{ \alpha }} } \: and \: \frac{ \large{1}}{ \large{  \beta   }} \: are

 \large{ {x}^{2} - (  \frac{1}{ \alpha }  +   \frac{1}{ \beta }  )x +   \frac{1}{ \alpha  \beta }    }

 \large{ {x}^{2} - (  \frac{3}{ 2}  +   {2}  )x +   \frac{3 \times 2}{   2 }    }

 { \large{ {x}^{2} -  \frac{ \large{7}} { \large{2}}x  + 3 } }

So,

Equation whose zeroes will

 \large{  \frac{ \large{1}}{ \large{ \alpha }} } \: and \: \frac{ \large{1}}{ \large{  \beta   }} \: are

 \boxed{ \large{ {x}^{2} -  \frac{ \large{7}} { \large{2}}x  + 3 } }

Similar questions