Math, asked by jaswalsharmila58, 1 month ago

help me in solving this iam a teacher of class 10​

Attachments:

Answers

Answered by user0888
16

Topic

  • Trigonometry

A branch of Mathematics about study of triangles.

  • Trigonometric Identity

When an equation is always true we call it an identity.

\implies \boxed{\sin^{2} x+\cos^{2} x=1}

Solution

Modifying the basic identity, we get the following.

\implies \sin^{2} x+\cos^{2} x=1

\implies 1-\cos^{2} x=\sin^{2} x

\implies \dfrac{1}{\sin^{2} x} -\dfrac{1}{\tan^{2} x} =1

\implies \boxed{\csc^{2} x-\cot^{2} x=1}

The given equation is equivalent to the following.

\implies \dfrac{1}{\csc x+\cot x} +\dfrac{1}{\csc x-\cot x} =\dfrac{2}{\sin x}

It is enough to prove this equation is true.

Left-hand Side

=\dfrac{\csc x-\cot x+\csc x+\cot x}{\csc^{2} x-\cot^{2} x}

=\dfrac{2\csc x}{\csc^{2} x-\cot^{2} x}

=\dfrac{2\csc x}{1}

=\dfrac{2}{\sin x}

= Right-hand Side

This is the required answer.

Answered by mathdude500
8

\large\underline{\sf{Given \:Question - }}

Prove that

 \rm \: \dfrac{1}{cosecx + cotx} - \dfrac{1}{sinx} = \dfrac{1}{sinx}  - \dfrac{1}{cosecx - cotx}

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{1}{cosecx +  cotx}  - \dfrac{1}{sinx}

On rationalizing the first term, we get

\rm \:  =  \:  \: \dfrac{1}{cosecx + cotx}  \times \dfrac{cosecx - cotx}{cosecx - cotx}  - cosecx

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \dfrac{1}{sinx}   = cosecx\bigg \}}

\rm \:  =  \:  \: \dfrac{cosecx - cotx}{ {cosec}^{2} x -  {cot}^{2}x }  - cosecx

 \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: cosecx - cotx - cosecx

\red{\bigg \{ \because \:  {cosec}^{2}x -  {cot}^{2}x = 1  \bigg \}}

\rm \:  =  \:  \:  - cotx

Hence,

\bf :\longmapsto\:\dfrac{1}{cosecx +  cotx}  - \dfrac{1}{sinx}  =  -  \: cotx -  - (1)

Consider RHS

\rm :\longmapsto\:\dfrac{1}{sinx}  - \dfrac{1}{cosecx + cotx}

On rationalizing the second term, we get

\rm \:  =  \:  \: cosecx - \dfrac{1}{cosecx - cotx}  \times \dfrac{cosecx + cotx}{cosecx + cotx}

\rm \:  =  \:  \: cosecx - \dfrac{cosecx + cotx}{ {cosec}^{2}x -  {cot}^{2}x }

\rm \:  =  \:  \: cosecx - (cosecx + cotx)

\rm \:  =  \:  \: cosecx - cosecx - cotx

\rm \:  =  \:  \:  -  \: cotx

Hence,

\bf :\longmapsto\:\dfrac{1}{sinx}  - \dfrac{1}{cosecx + cotx}  =  -  \: cotx -  -  (2)

From equation (1) and equation (2), we get

 \bf \: \dfrac{1}{cosecx + cotx} - \dfrac{1}{sinx} = \dfrac{1}{sinx}  - \dfrac{1}{cosecx - cotx}

Hence, Proved

Additional Information :

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions