Math, asked by swagataabaral, 10 months ago

help me please in proving ​

Attachments:

Answers

Answered by anindyaadhikari13
4

LHS:-

 \cot \theta -  \tan \theta

 =  \frac{ \cos \theta}{ \sin \theta}  -  \frac{ \sin \theta}{ \cos \theta }

 =  \frac{ \cos^{2}  -  { \sin }^{2}  \theta }{ \sin \theta \cos \theta }

Now,

 \sin2 \theta = 2 \sin\theta \cos \theta

 \implies \sin \theta \cos \theta =  \frac{2 \sin \theta }{2}

Also,

 \cos2\theta =  \cos^{2}  \theta -  \sin^{2}  \theta

Putting all the values, we get,

 \frac{ \cos 2\theta}{ \frac{ \sin2 \theta }{2} }

 =  \frac{2 \cos2 \theta }{ \sin2 \theta }

 = 2 \cot \theta

RHS:-

 = 2 \cot2 \theta

Hence, LHS=RHS (Proved).

Similar questions