Math, asked by Anonymous, 10 hours ago

Help me pls

Nonsense/No solution = report​

Attachments:

Answers

Answered by vikasjioasus
4

Hope you find this Solution Helpful ☺️

Attachments:
Answered by mathdude500
6

Question

Find ths sum of the first 6 terms of the sequence 3645, 1215, 405.

\large\underline{\sf{Solution-}}

Given series is

\rm \: 3645, \: 1215, \: 405, \:  -  -  -

Let we first check the series

We have given

\rm \: a_1 = 3645

\rm \: a_2 = 1215

\rm \: a_3 = 405

Consider,

\rm \: \dfrac{a_2}{a_1}  = \dfrac{1215}{3645}  = \dfrac{1}{3}

Consider,

\rm \: \dfrac{a_3}{a_2}  = \dfrac{405}{1215}  = \dfrac{1}{3}

\rm\implies \:\dfrac{a_2}{a_1}  = \dfrac{a_3}{a_2}

This implies, the given series forms a GP series.

So, we have

\rm \: a_1 = 3645

\rm \: r = \dfrac{1}{3}

\rm \: n = 6

We know,

↝ Sum of n  terms of an geometric series is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{a \: (1 -  {r}^{n} )}{1 - r}  \:  \:  \sf \: provided \: that \: r \:  \ne \: 1}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of GP..

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

So, on substituting the values, we get

\rm \: S_6 = 3645 \times \dfrac{1 -  {\bigg(\dfrac{1}{3}  \bigg) }^{6} }{1 - \dfrac{1}{3} }

\rm \: S_6 = 3645 \times \dfrac{1 -  \dfrac{1}{729}  }{\dfrac{3 - 1}{3} }

\rm \: S_6 = 3645 \times \dfrac{\dfrac{729 - 1}{729}  }{\dfrac{2}{3} }

\rm \: S_6 = 3645 \times \dfrac{728}{729}  \times \dfrac{3}{2}

\rm \: S_6 = 3645 \times \dfrac{364}{243}

\rm \: S_6 = 15 \times 364

\bf\implies \:S_6 = 5460

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

↝ nᵗʰ term of an geometric series is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\: {a \: r}^{n \:  -  \: 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

Similar questions