Math, asked by saxenaprerna5292, 3 months ago

help me
3 - 2 \sqrt{2}  \ - \frac{1}{3 - 2 \sqrt{2} }

Answers

Answered by Arceus02
0

Given:-

  • 3 - 2 \sqrt{2}  -  \dfrac{1}{3 - 2 \sqrt{2} }

We have to find the value of this.

\\

Answer:-

Given that,

3 - 2 \sqrt{2}  -  \dfrac{1}{3 - 2 \sqrt{2} }

First we have to simplify the value of \dfrac{1}{3 - 2\sqrt{2}} by rationalising the denominator.

So,

 \dfrac{1}{3 - 2 \sqrt{2} }

The rationalising factor will be the conjugate pair of the denominator.

So, here Rationalising factor = 3 + 2\sqrt{2}

Multiplying both numerator and denominator with 3 + 2\sqrt{2},

{ \longrightarrow \dfrac{1}{3 - 2 \sqrt{2}} =  \dfrac{1(3 +  2\sqrt{2}) }{(3 - 2 \sqrt{2})(3 + 2 \sqrt{2})  } }

Applying (a - b)(a + b) = a² - b² with a = 3 and b = 2√2,

 \longrightarrow \dfrac{1}{3 - 2 \sqrt{2} } =  \dfrac{3 +  2\sqrt{2} }{ {(3)}^{2}  -  {(2 \sqrt{2}) }^{2}  }

 \longrightarrow \dfrac{1}{3 - 2 \sqrt{2} } =  \dfrac{3 +  2\sqrt{2} }{ 9 - 8  }

 \longrightarrow \dfrac{1}{3 - 2 \sqrt{2} } =  \dfrac{3 +  2\sqrt{2} }{ 1  }

{ \longrightarrow \dfrac{1}{3 - 2 \sqrt{2} } =  3 +  2\sqrt{2}  \quad \dots(1)}

So,

3 - 2 \sqrt{2}  -  \dfrac{1}{3 - 2 \sqrt{2} }

From (1),

 =  3 - 2 \sqrt{2}  -  (3 +  2\sqrt{2})

 =  3 - 2 \sqrt{2}  -  3  -   2\sqrt{2}

 =    -   4\sqrt{2}

\\

Hence,

{ \longrightarrow  \underline{ \underline{3 - 2 \sqrt{2}  -  \dfrac{1}{3 - 2 \sqrt{2} } =  - 4 \sqrt{2}  }}}

Similar questions