Math, asked by seth87, 1 year ago

help me ..........to solve this question ​

Attachments:

Answers

Answered by sivaprasath
2

Answer:

Step-by-step explanation:

(instead of θ, I use A)

1)

Given :

To find the value of :

2(sin⁶A + cos⁶A) - 3(sin⁴A + cos⁴A)

Solution :

⇒ 2(sin⁶A + cos⁶A) - 3(sin⁴A + cos⁴A)

⇒ 2[(sin²A)³ + (cos²A)³] - 3[(sin²A)² + (cos²A)²]

⇒ 2[sin²A + cos²A](sin⁴A - sin² A cos² A + cos⁴A) - 3[ (sin²A + cos²A)² - 2sin² A cos² A]

⇒ 2[1](sin⁴A - sin² A cos² A + cos⁴A) - 3[ (1)² - 2sin² A cos² A]

⇒ 2(sin⁴A - sin² A cos² A + cos⁴A) - 3[1 - 2sin² A cos² A]

⇒ 2sin⁴A - 2sin² A cos² A + 2cos⁴A - 3 + 6sin² A cos² A

⇒ 2sin⁴A + 4sin² A cos² A + 2cos⁴A - 3

⇒ 2 (sin⁴A + 2sin² A cos² A + cos⁴A) - 3

⇒ 2 [sin⁴A + sin² A cos² A + sin² A cos² A + cos⁴A] - 3

⇒ 2 [sin²A(sin²A + cos²A) + cos²A(sin²A + cos²A)] - 3

⇒ 2 [sin²A(1) + cos²A(1)] - 3

⇒ 2 [sin²A + cos²A] -3 = 2(1) -3 = 2 - 3 = -1

__

2)

Given :

To simplify A & B,

If, A = \frac{1}{1+x^{b-c}+x^{b-a}} +\frac{1}{1+x^{c-a}+x^{c-b}} +\frac{1}{1+x^{a-b}+x^{a-c}}

B=(\frac{x^m}{x^n} )^{m^2 + mn + n^2} \times (\frac{x^n}{x^l} )^{n^2 + nl + l^2} \times (\frac{x^l}{x^m})^{l^2 + lm + m^2}

Solution :

A = \frac{1}{1+x^{b-c}+x^{b-a}} +\frac{1}{1+x^{c-a}+x^{c-b}} +\frac{1}{1+x^{a-b}+x^{a-c}}

A = \frac{(1+x^{b-c}+x^{b-a})(1+x^{c-a}+x^{c-b}) + (1+x^{c-a}+x^{c-b})(1+x^{a-b}+x^{a-c})+(1+x^{a-b}+x^{a-c})(1+x^{b-c}+x^{b-a})}{(1+x^{b-c}+x^{b-a})(1+x^{c-a}+x^{c-b})(1+x^{a-b}+x^{a-c})}

⇒ A = 1

⇒ A = 1 ,.

B=(\frac{x^m}{x^n} )^{m^2 + mn + n^2} \times (\frac{x^n}{x^l} )^{n^2 + nl + l^2} \times (\frac{x^l}{x^m})^{l^2 + lm + m^2}

B=(x^{m-n} )^{m^2 + mn + n^2} \times (x^{n-l})^{n^2 + nl + l^2} \times (x^{l-m})^{l^2 + lm + m^2}

⇒ B = x^{m^3 - n^3 + n^3 - l^3 + l^3 - m^3} = x^0 = 1

⇒ B = 1


seth87: thankyou so much you are great
Similar questions